期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hollow structured Cu@ZrO_(2) derived from Zr-MOF for selective hydrogenation of CO_(2) to methanol 被引量:4
1
作者 Xiaoyu Han Maoshuai Li +5 位作者 Xiao Chang Ziwen Hao Jiyi Chen yutong pan Sibudjing Kawi Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期277-287,I0008,共12页
The development of a highly efficient catalyst for CO_(2) activation and selective conversion to methanol is critical to address the issues associated with the high thermal stability of CO_(2) and controllable synthes... The development of a highly efficient catalyst for CO_(2) activation and selective conversion to methanol is critical to address the issues associated with the high thermal stability of CO_(2) and controllable synthesis of methanol.Cu-based catalysts have been widely studied because of the low cost and excellent performance in mild conditions.However,the improvement of catalytic activity and selectivity remains challenging.Herein,we prepared hollow Cu@ZrO_(2) catalysts through pyrolysis of Cu-loaded Zr-MOF for CO_(2) hydrogenation to methanol.Low-temperature pyrolysis generated highly dispersed Cu nanoparticles with balanced Cu^(0)/Cu^(+)sites,larger amounts of surface basic sites and abundant Cu-ZrO_(2) interface in the hollow structure,contributing to enhanced catalytic capacity for adsorption/activation of CO_(2) and selective hydrogenation to methanol.In situ Fourier Transform Infrared Spectroscopy revealed the methanol formation followed the formate-intermediated pathway.This work would provide a guideline for the design of high-performance catalysts and the understanding of the mechanism and active sites for CO_(2) hydrogenation to methanol. 展开更多
关键词 CO_(2)conversion Methanol synthesis Cu-based catalyst MOF808 Hollow structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部