Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging tech...Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging technique using voltage indicator dyes or calcium indicator dyes. Especially, calcium imaging using fluorescent calcium indicator dyes is often more useful, because they exhibit larger changes in the fluorescence intensity than voltage indicator dyes and their fluorescence changes can be detect easily. Additionally, calcium signals play key roles in the brain function, such as the long-term potentiation (LTP) in the hippocampus, and calcium imaging can be a powerful tool to elucidate the brain function. In this study, we constructed a measurement apparatus combining the MEA system and laser confocal calcium imaging and simultaneously measured electric signals and calcium signals in acute mouse hippocampal slices. The obtained results showed the availability of the present method.展开更多
The procerebrum (PC) of the land slug Limax is the olfactory center involved in olfactory discrimination and learning. In the PC, an oscillation of local field potential (LFP) with 0.5 - 1 Hz is observed by electrophy...The procerebrum (PC) of the land slug Limax is the olfactory center involved in olfactory discrimination and learning. In the PC, an oscillation of local field potential (LFP) with 0.5 - 1 Hz is observed by electrophysiological extracellular recording. Additionally, spatiotemporal neural activities in the PC have been examined using optical recordings. However, extracellular recording is preferable to measure neural activities for a long time with a high speed, while it is not abundant in spatial information. In this study, we therefore attempted to elicit spatial information from extracellular recording. For this purpose, we evaluated spatial information included in the LFP compared with the spatiotemporal neural activities measured by the fluorescent voltage imaging. As a result, aversive odors induced the coherent spatiotemporal neural activities in the PC, and the increase in coherency was observed as a change in the LFP waveform. It was also evaluated as a decrease in entropy by analyzing the LFP oscillation patterns and wavelet analysis. Thus, although the LFP provides only one series of signals, the coherency of the spatiotemporal neural activities in the PC can be evaluated by applying extracellular recording with wavelet analysis.展开更多
The electrophysiological methods using microelectrodes are not appropriate for the simultaneous measurement of neural activities of many neurons. To overcome the difficulty, the fluorescent imaging technique using vol...The electrophysiological methods using microelectrodes are not appropriate for the simultaneous measurement of neural activities of many neurons. To overcome the difficulty, the fluorescent imaging technique using voltage sensitive dyes can be a powerful technique. The voltage sensitive dyes, however, generally exhibit a relatively small change in their fluorescence intensities, resulting in a low S/N ratio. Additionally, they often exhibit photobleaching and phototoxity. We have therefore improved the fluorescent voltage imaging technique by using a LED as the light source and an electron multiplying (EM)-CCD camera as the fluorescence detector. In this study, we applied our imaging system for the measurement of two kind of molluscan neural activities;one of which is involved in the olfactory processing of the land slug Limax valentianus and the other is involved in the feeding rhythm of the pond snail Lymnaea stagnalis. The system enabled us to measure the neural activities for a long time with a high speed and a high S/N ratio, and the obtained results showed some new physiological findings.展开更多
文摘Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging technique using voltage indicator dyes or calcium indicator dyes. Especially, calcium imaging using fluorescent calcium indicator dyes is often more useful, because they exhibit larger changes in the fluorescence intensity than voltage indicator dyes and their fluorescence changes can be detect easily. Additionally, calcium signals play key roles in the brain function, such as the long-term potentiation (LTP) in the hippocampus, and calcium imaging can be a powerful tool to elucidate the brain function. In this study, we constructed a measurement apparatus combining the MEA system and laser confocal calcium imaging and simultaneously measured electric signals and calcium signals in acute mouse hippocampal slices. The obtained results showed the availability of the present method.
文摘The procerebrum (PC) of the land slug Limax is the olfactory center involved in olfactory discrimination and learning. In the PC, an oscillation of local field potential (LFP) with 0.5 - 1 Hz is observed by electrophysiological extracellular recording. Additionally, spatiotemporal neural activities in the PC have been examined using optical recordings. However, extracellular recording is preferable to measure neural activities for a long time with a high speed, while it is not abundant in spatial information. In this study, we therefore attempted to elicit spatial information from extracellular recording. For this purpose, we evaluated spatial information included in the LFP compared with the spatiotemporal neural activities measured by the fluorescent voltage imaging. As a result, aversive odors induced the coherent spatiotemporal neural activities in the PC, and the increase in coherency was observed as a change in the LFP waveform. It was also evaluated as a decrease in entropy by analyzing the LFP oscillation patterns and wavelet analysis. Thus, although the LFP provides only one series of signals, the coherency of the spatiotemporal neural activities in the PC can be evaluated by applying extracellular recording with wavelet analysis.
文摘The electrophysiological methods using microelectrodes are not appropriate for the simultaneous measurement of neural activities of many neurons. To overcome the difficulty, the fluorescent imaging technique using voltage sensitive dyes can be a powerful technique. The voltage sensitive dyes, however, generally exhibit a relatively small change in their fluorescence intensities, resulting in a low S/N ratio. Additionally, they often exhibit photobleaching and phototoxity. We have therefore improved the fluorescent voltage imaging technique by using a LED as the light source and an electron multiplying (EM)-CCD camera as the fluorescence detector. In this study, we applied our imaging system for the measurement of two kind of molluscan neural activities;one of which is involved in the olfactory processing of the land slug Limax valentianus and the other is involved in the feeding rhythm of the pond snail Lymnaea stagnalis. The system enabled us to measure the neural activities for a long time with a high speed and a high S/N ratio, and the obtained results showed some new physiological findings.