期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental results of a magnetic field modification to the radio frequency driver of a negative ion source
1
作者 谢俊炜 谢亚红 +6 位作者 韦江龙 梁立振 彭旭峰 杨宇雯 顾玉明 胡纯栋 谢远来 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期162-167,共6页
A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in fr... A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced. 展开更多
关键词 neutral beam injection negative ion source magnetic filter radio frequency ion source
下载PDF
Facile synthesis of graphene-supported Ni-CeOx nano-composites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane 被引量:14
2
作者 Qilu Yao Zhang-Hui Lu +3 位作者 yuwen yang Yuzhen Chen Xiangshu Chen Hai-Long Jiang 《Nano Research》 SCIE EI CAS CSCD 2018年第8期4412-4422,共11页
Development of low-cost and high-performance catalysts for hydrogen generation via hydrolysis of ammonia borane (NH3BH3, AB) is a highly desirable pathway for future hydrogen utilization. In this work, Ni nanocataly... Development of low-cost and high-performance catalysts for hydrogen generation via hydrolysis of ammonia borane (NH3BH3, AB) is a highly desirable pathway for future hydrogen utilization. In this work, Ni nanocatalysts doped with CeOx and supported on graphene (Ni-CeOdgraphene) were synthesized via a facile chemical reduction route and applied as robust catalysts for the hydrolysis of AB in aqueous solution at room temperature. The as-synthesized Ni-CeOdgraphene nanocomposites (NCs) exhibited excellent catalytic activity with a turnover frequency (TOF) as high as 68.2 min-1, which is 49-fold higher than that for a simple Ni nanoparticle catalyst and is among the highest values reported for non-noble metal catalysts in AB hydrolysis. The development of efficient and low-cost Ni-CeOdgraphene catalysts enhances the feasibility of using ammonia borane as a chemical hydrogen storage material, which may find application in a hydrogen fuel-cell based economy. 展开更多
关键词 hydrogen generation ammonia borane CATALYSIS GRAPHENE nickel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部