Microgrids(MGs)dominated by power electronics interface inverters can augment distribution system resiliency.The interactions among neighboring MGs and the requirements for flexible system network reconfiguration moti...Microgrids(MGs)dominated by power electronics interface inverters can augment distribution system resiliency.The interactions among neighboring MGs and the requirements for flexible system network reconfiguration motivate the development of dynamic MGs.To improve the distribution system resiliency in the context of dynamic MGs,this paper proposes the concept of functional fusion of secondary control levels across neighboring dynamic MGs with the integration of multiple compensation terms into the secondary controller in each distributed generator(DG).Moreover,two kinds of consensus-based algorithms with the consideration of communication delays are encompassed to calculate the average values of static and dynamic variables and thereby build an effective communications network among DGs in dynamic MGs.Finally,the effectiveness of the proposed secondary controller is validated using a 9-bus test distribution feeder.展开更多
As a growing number of microgrids(MGs)has been integrated into the modern power grids,the interconnection and applicable cooperation among multiple MGs motivate the development of networked MGs.Dynamic MGs,as an advan...As a growing number of microgrids(MGs)has been integrated into the modern power grids,the interconnection and applicable cooperation among multiple MGs motivate the development of networked MGs.Dynamic MGs,as an advanced networked MGs structure,can not only integrate multiple MGs into the distribution system but also fulfill the requested system network reconfiguration with improved flexibility.A general distributed control approach for networked MGs is reviewed.A distributed control framework for dynamic MGs operation is developed,along with an extensible architecture with considerations of large-scale distributed energy resources(DERs)integration.A scalable small-signal stability analysis is conducted per the proposed distributed control strategies and the conditions under which the system is exponentially stable are derived.At last,the effectiveness of the proposed control framework and stability analysis are verified using a 6-bus test feeder.展开更多
文摘Microgrids(MGs)dominated by power electronics interface inverters can augment distribution system resiliency.The interactions among neighboring MGs and the requirements for flexible system network reconfiguration motivate the development of dynamic MGs.To improve the distribution system resiliency in the context of dynamic MGs,this paper proposes the concept of functional fusion of secondary control levels across neighboring dynamic MGs with the integration of multiple compensation terms into the secondary controller in each distributed generator(DG).Moreover,two kinds of consensus-based algorithms with the consideration of communication delays are encompassed to calculate the average values of static and dynamic variables and thereby build an effective communications network among DGs in dynamic MGs.Finally,the effectiveness of the proposed secondary controller is validated using a 9-bus test distribution feeder.
文摘As a growing number of microgrids(MGs)has been integrated into the modern power grids,the interconnection and applicable cooperation among multiple MGs motivate the development of networked MGs.Dynamic MGs,as an advanced networked MGs structure,can not only integrate multiple MGs into the distribution system but also fulfill the requested system network reconfiguration with improved flexibility.A general distributed control approach for networked MGs is reviewed.A distributed control framework for dynamic MGs operation is developed,along with an extensible architecture with considerations of large-scale distributed energy resources(DERs)integration.A scalable small-signal stability analysis is conducted per the proposed distributed control strategies and the conditions under which the system is exponentially stable are derived.At last,the effectiveness of the proposed control framework and stability analysis are verified using a 6-bus test feeder.