As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performa...As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performance of CGBM in acid mine water with sulfate ions,CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days.The changes of mass,ultrasonic pulse velocity(UPV)and compressive strength of the specimens at different ages were analyzed.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to analyze the microstructure and composition of the specimens.The results show that incorporation of barium hydroxide into CGBM specimen can promote the formation of barium sulfate precipitation and inhibit the generation of corrosion products such as ettringite.Meanwhile,barium sulfate precipitation blocks the pore channel invaded by sulfuric acid solution,delaying the progress of corrosion reaction and making the interior of CGBM specimen more complete.And the specimen with 2.0 kg/m^(3)barium hydroxide was more effective in improving performance.This study provides a basis for the ratio design of CGBM in acid mine water with sulfate ions.展开更多
To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic s...To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM)under the high stressstrength ratio.The creep damage was monitored using an electrical resistivity device,ultrasonic testing device,and acoustic emission(AE)instrument.The results showed that the CGBM sample has a creep hardening property.The creep failure strength(CFS)is slightly larger than the uniaxial compressive strength(UCS),ranging in ratio from 108.9%to 116.5%.The instantaneous strain,creep strain,and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests.The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process.The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model.Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process.The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity,ultrasonic pulse velocity(UPV),and AE signals.展开更多
We consider the following fractional Schr¨odinger equation:(-Δ)^(s)u+V(y)u=u^(p);u>0 in R^(N);(0.1)where s ∈(0,1),1<p<N+2s/N-2s,and V(y)is a positive potential function and satisfies some expansion con...We consider the following fractional Schr¨odinger equation:(-Δ)^(s)u+V(y)u=u^(p);u>0 in R^(N);(0.1)where s ∈(0,1),1<p<N+2s/N-2s,and V(y)is a positive potential function and satisfies some expansion condition at infinity.Under the Lyapunov-Schmidt reduction framework,we construct two kinds of multi-spike solutions for(0.1).The first k-spike solution uk is concentrated at the vertices of the regular k-polygon in the(y1;y2)-plane with k and the radius large enough.Then we show that uk is non-degenerate in our special symmetric workspace,and glue it with an n-spike solution,whose centers lie in another circle in the(y3;y4)-plane,to construct infinitely many multi-spike solutions of new type.The nonlocal property of(-Δ)^(s)is in sharp contrast to the classical Schr¨odinger equations.A striking difference is that although the nonlinear exponent in(0.1)is Sobolev-subcritical,the algebraic(not exponential)decay at infinity of the ground states makes the estimates more subtle and difficult to control.Moreover,due to the non-locality of the fractional operator,we cannot establish the local Pohozaev identities for the solution u directly,but we address its corresponding harmonic extension at the same time.Finally,to construct new solutions we need pointwise estimates of new approximate solutions.To this end,we introduce a special weighted norm,and give the proof in quite a different way.展开更多
In this paper, the authors study the existence and non-existence of positive solutions for singular p-Laplacian equation --Δpu=f(x)u^-α + λg(x)u^β in RN, where N ≥3, 1 〈 p 〈 N, λ〉 0, 0 〈 α〈 1,max(p, ...In this paper, the authors study the existence and non-existence of positive solutions for singular p-Laplacian equation --Δpu=f(x)u^-α + λg(x)u^β in RN, where N ≥3, 1 〈 p 〈 N, λ〉 0, 0 〈 α〈 1,max(p, 2) 〈 β+ 1 〈 p* = Np/N-p We prove that there exists a critical value A such that the problem has at least two solutions if 0 〈 λ 〈 A; at least one solution if λ= A; and no solutions if λ〉A.展开更多
This paper is concerned with the existence and asymptotical behavior of positive ground state solutions for a class of critical quasilinear Schrodinger equation.By using a change of variables and variational argument,...This paper is concerned with the existence and asymptotical behavior of positive ground state solutions for a class of critical quasilinear Schrodinger equation.By using a change of variables and variational argument,we prove the existence of positive ground state solution and discuss their asymptotical behavior。展开更多
基金sponsored by the National Natural Science Foundation of China(Grant No.51974192)the Distinguished Youth Funds of National Natural Science Foundation of China(Grant No.51925402)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering Project(2021SX-TD001).
文摘As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performance of CGBM in acid mine water with sulfate ions,CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days.The changes of mass,ultrasonic pulse velocity(UPV)and compressive strength of the specimens at different ages were analyzed.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to analyze the microstructure and composition of the specimens.The results show that incorporation of barium hydroxide into CGBM specimen can promote the formation of barium sulfate precipitation and inhibit the generation of corrosion products such as ettringite.Meanwhile,barium sulfate precipitation blocks the pore channel invaded by sulfuric acid solution,delaying the progress of corrosion reaction and making the interior of CGBM specimen more complete.And the specimen with 2.0 kg/m^(3)barium hydroxide was more effective in improving performance.This study provides a basis for the ratio design of CGBM in acid mine water with sulfate ions.
基金supported by the National Natural Science Foundation of China(No.51974192)Shanxi Province Postgraduate Education Innovation Project(No.2020SY567)+2 种基金the Applied Basic Research Project of Shanxi Province(No.201801D121092)Distinguished Youth Funds of National Natural Science Foundation of China(No.51925402)Shanxi Science and Technology Major Project(No.20201102004)。
文摘To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM)under the high stressstrength ratio.The creep damage was monitored using an electrical resistivity device,ultrasonic testing device,and acoustic emission(AE)instrument.The results showed that the CGBM sample has a creep hardening property.The creep failure strength(CFS)is slightly larger than the uniaxial compressive strength(UCS),ranging in ratio from 108.9%to 116.5%.The instantaneous strain,creep strain,and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests.The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process.The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model.Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process.The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity,ultrasonic pulse velocity(UPV),and AE signals.
基金supported by National Natural Science Foundation of China(Grant No.11771469)Yuxia Guo was supported by National Natural Science Foundation of China(Grant No.11771235)Shuangjie Peng was supported by National Natural Science Foundation of China(Grant No.11831009).
文摘We consider the following fractional Schr¨odinger equation:(-Δ)^(s)u+V(y)u=u^(p);u>0 in R^(N);(0.1)where s ∈(0,1),1<p<N+2s/N-2s,and V(y)is a positive potential function and satisfies some expansion condition at infinity.Under the Lyapunov-Schmidt reduction framework,we construct two kinds of multi-spike solutions for(0.1).The first k-spike solution uk is concentrated at the vertices of the regular k-polygon in the(y1;y2)-plane with k and the radius large enough.Then we show that uk is non-degenerate in our special symmetric workspace,and glue it with an n-spike solution,whose centers lie in another circle in the(y3;y4)-plane,to construct infinitely many multi-spike solutions of new type.The nonlocal property of(-Δ)^(s)is in sharp contrast to the classical Schr¨odinger equations.A striking difference is that although the nonlinear exponent in(0.1)is Sobolev-subcritical,the algebraic(not exponential)decay at infinity of the ground states makes the estimates more subtle and difficult to control.Moreover,due to the non-locality of the fractional operator,we cannot establish the local Pohozaev identities for the solution u directly,but we address its corresponding harmonic extension at the same time.Finally,to construct new solutions we need pointwise estimates of new approximate solutions.To this end,we introduce a special weighted norm,and give the proof in quite a different way.
基金supported by Natural Science Foundation of China under Grant No. 10871110
文摘In this paper, the authors study the existence and non-existence of positive solutions for singular p-Laplacian equation --Δpu=f(x)u^-α + λg(x)u^β in RN, where N ≥3, 1 〈 p 〈 N, λ〉 0, 0 〈 α〈 1,max(p, 2) 〈 β+ 1 〈 p* = Np/N-p We prove that there exists a critical value A such that the problem has at least two solutions if 0 〈 λ 〈 A; at least one solution if λ= A; and no solutions if λ〉A.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.11571040,11671331).
文摘This paper is concerned with the existence and asymptotical behavior of positive ground state solutions for a class of critical quasilinear Schrodinger equation.By using a change of variables and variational argument,we prove the existence of positive ground state solution and discuss their asymptotical behavior。