The sandstone of the third member of the Funing Formation(E1f3)in the northern slope zone of the Gaoyou Sag has the typical characteristics of high porosity and ultralow permeability,which makes it difficult for oil t...The sandstone of the third member of the Funing Formation(E1f3)in the northern slope zone of the Gaoyou Sag has the typical characteristics of high porosity and ultralow permeability,which makes it difficult for oil to flow.In this study,the lithological characteristics,sedimentary facies,diagenetic characteristics,pore struc-ture,and seepage ability of this sandstone are characterized in detail.Correlation analysis is used to reveal the reason for the sandstone high porosity-low permeability phenom-enon in the study area.The results indicate that this phenomenon is controlled mainly by the following three factors:1)the sedimentary environment is the initial affecting factor,whereby the deposition of a large number of fine-grained materials reduces the primary pores of sandstone.2)The Funing Formation has undergone strong compaction and cementation,which have led to the removal of most of the primary pores and a reduction in size of the throat channels.3)Owing to fluid activity during the later stage of diagenesis,sandstone underwent intense dissolution and a large number of particles(feldspar and lithic debris)formed many dissolution pores(accounting for nearly 60%of the total pore space).Among these factors,dissolution has contributed the most to the development of high porosity-low permeability phenomenon.This is mainly attributed to the inhomogeneous dissolution process,whereby the degree of particle dissolution(e.g.feldspar)exceeds that of cementing minerals(clay and carbonate minerals).The secondary dissolution pores have increased the porosity of sandstone in the study area;however,the pore connectivity(permeability)has not been significantly improved,thus resulting in the special high porosity-low permeability characteristics of this sandstone.展开更多
Centrifugal granulation is one key step to enable waste heat recovery from the molten slag in the iron and steel industry.Yet,it remains unknown about the granulation characteristics of molten slag with different chem...Centrifugal granulation is one key step to enable waste heat recovery from the molten slag in the iron and steel industry.Yet,it remains unknown about the granulation characteristics of molten slag with different chemical compositions,especially at high throughput.In this work,we provided an experimental study on centrifugal granulation with four types of molten slags.The stage-specific centrifugal granulation was recorded and analyzed at first.Both effects of atomizer configuration and chemical compositions on granulation were investigated in detail.The cup-type atomizer favors film-mode disintegration and possesses better anti-adhesion capacity although the final granule size was not strongly affected by the atomizer configuration.Most importantly,centrifugal granulation has been demonstrated with appreciable adaptability to composition-specific blast furnace(BF)slag with binary basicity of 0.9-1.3.The present study not only sheds light on the modest effect of the chemical composition of molten slag on centrifugal granulation characteristics,but also gains credit for the adaptivity of CGATER.展开更多
文摘The sandstone of the third member of the Funing Formation(E1f3)in the northern slope zone of the Gaoyou Sag has the typical characteristics of high porosity and ultralow permeability,which makes it difficult for oil to flow.In this study,the lithological characteristics,sedimentary facies,diagenetic characteristics,pore struc-ture,and seepage ability of this sandstone are characterized in detail.Correlation analysis is used to reveal the reason for the sandstone high porosity-low permeability phenom-enon in the study area.The results indicate that this phenomenon is controlled mainly by the following three factors:1)the sedimentary environment is the initial affecting factor,whereby the deposition of a large number of fine-grained materials reduces the primary pores of sandstone.2)The Funing Formation has undergone strong compaction and cementation,which have led to the removal of most of the primary pores and a reduction in size of the throat channels.3)Owing to fluid activity during the later stage of diagenesis,sandstone underwent intense dissolution and a large number of particles(feldspar and lithic debris)formed many dissolution pores(accounting for nearly 60%of the total pore space).Among these factors,dissolution has contributed the most to the development of high porosity-low permeability phenomenon.This is mainly attributed to the inhomogeneous dissolution process,whereby the degree of particle dissolution(e.g.feldspar)exceeds that of cementing minerals(clay and carbonate minerals).The secondary dissolution pores have increased the porosity of sandstone in the study area;however,the pore connectivity(permeability)has not been significantly improved,thus resulting in the special high porosity-low permeability characteristics of this sandstone.
基金supported by the National Natural Science Foundation of China(Grant No.:52206070)Innovative Research Group Project of National Natural Science Foundation of China(Grant No.:52021004)+1 种基金Venture&Innovation Support Program for Chongqing Overseas Returnees(Grant No.:cx2021080)National Natural Science Foundation of China(Grant No.:52106074).
文摘Centrifugal granulation is one key step to enable waste heat recovery from the molten slag in the iron and steel industry.Yet,it remains unknown about the granulation characteristics of molten slag with different chemical compositions,especially at high throughput.In this work,we provided an experimental study on centrifugal granulation with four types of molten slags.The stage-specific centrifugal granulation was recorded and analyzed at first.Both effects of atomizer configuration and chemical compositions on granulation were investigated in detail.The cup-type atomizer favors film-mode disintegration and possesses better anti-adhesion capacity although the final granule size was not strongly affected by the atomizer configuration.Most importantly,centrifugal granulation has been demonstrated with appreciable adaptability to composition-specific blast furnace(BF)slag with binary basicity of 0.9-1.3.The present study not only sheds light on the modest effect of the chemical composition of molten slag on centrifugal granulation characteristics,but also gains credit for the adaptivity of CGATER.