Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while th...Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention.In this work,a separator(UiO-66-GF)modified by Zr-based metal organic framework for robust AZIBs is proposed.UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of(002)crystal plane,which is favorable for corrosion resistance and dendrite-free zinc deposition.Consequently,Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm^(−2),and Zn|UiO-66-GF-2.2|MnO_(2) cells show excellent long-term stability with capacity retention of 85%after 1000 cycles.The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs.展开更多
The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-gr...The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-growing demand for renewable energy integration.Among available candidates,aqueous zinc-ion batteries(AZIBs)receive extensive researchers'attention because of their material abundance,high capacity,high safety,and environmental friendliness.However,the irreversible issues of Zn anode in terms of notorious dendric Zn growth,Zn corrosion/hydrogen evolution,and passivation significantly impede the commercialization of high-performance AZIBs.Carbon materials have advantages of large specific surface area,low cost,high electrical conductivity,controllable structure,and good stability.Their application provides remedies for improving the comprehensive performance of Zn anodes.In this review,the fundamentals and issues of Zn anodes,and the research progress with functional carbon materials for Zn anodes in recent years are presented.Three major strategies are described in detail,including the use of carbon materials(carbon nanotubes,graphene,carbon fiber,metal-organic framework(MOF)derived host,etc.)as Zn plating/stripping substrates,as protective coating layers on Zn,and as electrolyte additives.Finally,the remaining challenges and perspectives of carbon materials in high-performance AZIBs are outlined.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.51872090,51972346)the Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+2 种基金the Natural Science Foundation of Hebei Province(No.E2020209151)the Hunan Natural Science Fund for Distinguished Young Scholar(2021JJ10064)the Program of Youth Talent Support for Hunan Province(2020RC3011).
文摘Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention.In this work,a separator(UiO-66-GF)modified by Zr-based metal organic framework for robust AZIBs is proposed.UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of(002)crystal plane,which is favorable for corrosion resistance and dendrite-free zinc deposition.Consequently,Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm^(−2),and Zn|UiO-66-GF-2.2|MnO_(2) cells show excellent long-term stability with capacity retention of 85%after 1000 cycles.The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs.
基金financially supported by the National Natural Science Foundation of China(51872090,51772097,and 22075067)the Hebei Natural Science Fund for Distinguished Young Scholar(E2019209433)+3 种基金the Youth Talent Program of Hebei Provincial Education Department(BJ2018020)the Natural Science Foundation of Hebei Province(E2020209151 and B2020201001)the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Science and Technology Project of Hebei Education Department(SLRC2019028)。
文摘The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-growing demand for renewable energy integration.Among available candidates,aqueous zinc-ion batteries(AZIBs)receive extensive researchers'attention because of their material abundance,high capacity,high safety,and environmental friendliness.However,the irreversible issues of Zn anode in terms of notorious dendric Zn growth,Zn corrosion/hydrogen evolution,and passivation significantly impede the commercialization of high-performance AZIBs.Carbon materials have advantages of large specific surface area,low cost,high electrical conductivity,controllable structure,and good stability.Their application provides remedies for improving the comprehensive performance of Zn anodes.In this review,the fundamentals and issues of Zn anodes,and the research progress with functional carbon materials for Zn anodes in recent years are presented.Three major strategies are described in detail,including the use of carbon materials(carbon nanotubes,graphene,carbon fiber,metal-organic framework(MOF)derived host,etc.)as Zn plating/stripping substrates,as protective coating layers on Zn,and as electrolyte additives.Finally,the remaining challenges and perspectives of carbon materials in high-performance AZIBs are outlined.