The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and su...Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.展开更多
[Objectives] To study the effects of ginsenoside Rbl Babu agent on the amplitude of microvascular vasomotion. [Methods]The in vitro transdermal permeation of ginsenoside Rbl Babu agent was performed by using intellige...[Objectives] To study the effects of ginsenoside Rbl Babu agent on the amplitude of microvascular vasomotion. [Methods]The in vitro transdermal permeation of ginsenoside Rbl Babu agent was performed by using intelligent transdermal apparatus,and the percutaneous fluid was collected and analyzed by using high performance liquid chromatography( HPLC). The Babu agent was stuck on the skin of acupoint area,determined by Laser Doppler Flowmeter,and amplitude of microvascular vasomotion of acupoint area was recorded. [Results] With the extension of transdermal time,the cumulative permeation rate of ginsenoside Rbl increased. The amplitude of microvascular vasomotion could be significantly increased with the application of ginsenoside Rbl Babu agent( P < 0. 01). [Conclusions]The drug delivery system of ginsenoside Rbl Babu agent can release the drug into the acupoint,increase the amplitude of microvascular vasomotion,and achieve the effect of acupuncture. Therefore,ginsenoside Rbl Babu agent can replace the acupuncture clinically to treat diseases.展开更多
Ineffective control of dendrite growth and side reactions on Zn anodes significantly retards commercialization of aqueous Zn-ion batteries.Unlike conventional interfacial modification strategies that are primarily foc...Ineffective control of dendrite growth and side reactions on Zn anodes significantly retards commercialization of aqueous Zn-ion batteries.Unlike conventional interfacial modification strategies that are primarily focused on component optimization or microstructural tuning,herein,we propose a crystallinity engineering strategy by developing highly crystalline carbon nitride protective layers for Zn anodes through molten salt treatment.Interestingly,the highly ordered structure along with sufficient functional polar groups and pre-intercalated Kþendows the coating with high ionic conductivity,strong hydrophilicity,and accelerated ion diffusion kinetics.Theoretical calculations also confirm its enhanced Zn adsorption capability compared to commonly reported carbon nitride with amorphous or semi-crystalline structure and bare Zn.Benefiting from the aforementioned features,the as-synthesized protective layer enables a calendar lifespan of symmetric cells for 1100 h and outstanding stability of full cells with capacity retention of 91.5%after 1500 cycles.This work proposes a new conceptual strategy for Zn anode protection.展开更多
Exploration of bifunctional electrocatalysts toward effective oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is pivotal for developing high-efficiency and rechargeable metal-air batteries but remains ...Exploration of bifunctional electrocatalysts toward effective oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is pivotal for developing high-efficiency and rechargeable metal-air batteries but remains great challenging.Here we elaborately synthesize lamellar-assembled PdNi super-nanosheets(SNSs)with an optimized Pd/Ni molar ratio to serve as attractive ORR and OER bifunctional electrocatalysts for rechargeable high-powered Zn-air batteries(ZABs).The products are layer-by-layer stackings of ultrathin PdNi nanosheet motifs.On the drastically extended two-dimensional(2D)surface,the inserted Ni atoms can substantially lower down the d-band center of surface Pd toward improved ORR kinetics and concurrently create oxytropic NiOx sites to adsorb–OH groups for promoting the reverse OER electrocatalysis.Specifically,the ORR mass activity and specific activity of the primary Pd_(92)Ni_(8)SNSs attain 2.5 A·mg^(−1)and 3.15 mA·cm^(−2),which are respectively 14 and 9 times those of commercial Pt/C.Meanwhile,the OER activity and stability of Pd_(92)Ni_(8)SNSs/C distinctly outperform those of the RuO_(2)benchmark,suggesting excellent reversible oxygen electrocatalysis.The power density of the ZAB with Pd_(92)Ni_(8)SNSs/C as the air cathode is 2.7 times higher than that by Pt/C benchmark.Significantly,it can last for over 150 h without significant performance degradation during the charge–discharge cycle test.This work showcases a feasible strategy for developing self-assembled multimetallic 2D nanomaterials with excellent bifunctional catalytic performances toward energy conversion applications.展开更多
The study of the sediment of Core M1 from Jianghan Plain suggests that the sediment source of this area changed in the Holocene, which corresponds with the south moving of the Yangtze River. Since then, the sediment s...The study of the sediment of Core M1 from Jianghan Plain suggests that the sediment source of this area changed in the Holocene, which corresponds with the south moving of the Yangtze River. Since then, the sediment source has been mainly from the Hanshui River.展开更多
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金supported by the National Natural Science Foundation of China(81703947)the Fundamental Research Funds for the Central Universities(2019-JYB-XJSJJ-011).
文摘Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.
基金Supported by Fundamental Study on Rules and Influencing Factors of Specificity of Acupoint Effect(2012CB518502)
文摘[Objectives] To study the effects of ginsenoside Rbl Babu agent on the amplitude of microvascular vasomotion. [Methods]The in vitro transdermal permeation of ginsenoside Rbl Babu agent was performed by using intelligent transdermal apparatus,and the percutaneous fluid was collected and analyzed by using high performance liquid chromatography( HPLC). The Babu agent was stuck on the skin of acupoint area,determined by Laser Doppler Flowmeter,and amplitude of microvascular vasomotion of acupoint area was recorded. [Results] With the extension of transdermal time,the cumulative permeation rate of ginsenoside Rbl increased. The amplitude of microvascular vasomotion could be significantly increased with the application of ginsenoside Rbl Babu agent( P < 0. 01). [Conclusions]The drug delivery system of ginsenoside Rbl Babu agent can release the drug into the acupoint,increase the amplitude of microvascular vasomotion,and achieve the effect of acupuncture. Therefore,ginsenoside Rbl Babu agent can replace the acupuncture clinically to treat diseases.
基金National Natural Science Foundation of China,Grant/Award Number:22378055Applied Basic Research Program of Liaoning,Grant/Award Number:2022JH2/101300200+1 种基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515140188Fundamental Research Funds for the Central Universities,Grant/Award Numbers:N2002005,N2125004,N2225044,N232410019。
文摘Ineffective control of dendrite growth and side reactions on Zn anodes significantly retards commercialization of aqueous Zn-ion batteries.Unlike conventional interfacial modification strategies that are primarily focused on component optimization or microstructural tuning,herein,we propose a crystallinity engineering strategy by developing highly crystalline carbon nitride protective layers for Zn anodes through molten salt treatment.Interestingly,the highly ordered structure along with sufficient functional polar groups and pre-intercalated Kþendows the coating with high ionic conductivity,strong hydrophilicity,and accelerated ion diffusion kinetics.Theoretical calculations also confirm its enhanced Zn adsorption capability compared to commonly reported carbon nitride with amorphous or semi-crystalline structure and bare Zn.Benefiting from the aforementioned features,the as-synthesized protective layer enables a calendar lifespan of symmetric cells for 1100 h and outstanding stability of full cells with capacity retention of 91.5%after 1500 cycles.This work proposes a new conceptual strategy for Zn anode protection.
基金supported by the National Natural Science Foundation of China(No.22171093)the Natural Science Foundation of Fujian Province(Nos.2022J05058 and 2022J02008)the Scientific Research Funds of Huaqiao University(No.605-50Y21048).
文摘Exploration of bifunctional electrocatalysts toward effective oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is pivotal for developing high-efficiency and rechargeable metal-air batteries but remains great challenging.Here we elaborately synthesize lamellar-assembled PdNi super-nanosheets(SNSs)with an optimized Pd/Ni molar ratio to serve as attractive ORR and OER bifunctional electrocatalysts for rechargeable high-powered Zn-air batteries(ZABs).The products are layer-by-layer stackings of ultrathin PdNi nanosheet motifs.On the drastically extended two-dimensional(2D)surface,the inserted Ni atoms can substantially lower down the d-band center of surface Pd toward improved ORR kinetics and concurrently create oxytropic NiOx sites to adsorb–OH groups for promoting the reverse OER electrocatalysis.Specifically,the ORR mass activity and specific activity of the primary Pd_(92)Ni_(8)SNSs attain 2.5 A·mg^(−1)and 3.15 mA·cm^(−2),which are respectively 14 and 9 times those of commercial Pt/C.Meanwhile,the OER activity and stability of Pd_(92)Ni_(8)SNSs/C distinctly outperform those of the RuO_(2)benchmark,suggesting excellent reversible oxygen electrocatalysis.The power density of the ZAB with Pd_(92)Ni_(8)SNSs/C as the air cathode is 2.7 times higher than that by Pt/C benchmark.Significantly,it can last for over 150 h without significant performance degradation during the charge–discharge cycle test.This work showcases a feasible strategy for developing self-assembled multimetallic 2D nanomaterials with excellent bifunctional catalytic performances toward energy conversion applications.
文摘The study of the sediment of Core M1 from Jianghan Plain suggests that the sediment source of this area changed in the Holocene, which corresponds with the south moving of the Yangtze River. Since then, the sediment source has been mainly from the Hanshui River.