期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Coupling of BiOCl Ultrathin Nanosheets with Carbon Quantum Dots for Enhanced Photocatalytic Performance
1
作者 Pin Song Xiaoyu Fang +14 位作者 Wei Jiang yuyang cao Daobin Liu Shiqiang Wei Jun Du Lang Sun Lei Zhao Song Liu Yuzhu Zhou Jun Di Chade Lv Bijun Tang Jiefu Yang Tingting Kong Yujie Xiong 《Transactions of Tianjin University》 EI CAS 2024年第3期211-220,共10页
Over the past few decades,photocatalysis technology has received extensive attention because of its potential to mitigate or solve energy and environmental pollution problems.Designing novel materials with outstanding... Over the past few decades,photocatalysis technology has received extensive attention because of its potential to mitigate or solve energy and environmental pollution problems.Designing novel materials with outstanding photocatalytic activities has become a research hotspot in this field.In this study,we prepared a series of photocatalysts in which BiOCl nanosheets were modified with carbon quantum dots(CQDs)to form CQDs/BiOCl composites by using a simple solvothermal method.The photocatalytic performance of the resulting CQDs/BiOCl composite photocatalysts was assessed by rhodamine B and tetracycline degradation under visible-light irradiation.Compared with bare BiOCl,the photocatalytic activity of the CQDs/BiOCl composites was significantly enhanced,and the 5 wt%CQDs/BiOCl composite exhibited the highest photocatalytic activity with a degradation efficiency of 94.5%after 30 min of irradiation.Moreover,photocatalytic N_(2)reduction performance was significantly improved after introducing CQDs.The 5 wt%CQDs/BiOCl composite displayed the highest photocatalytic N_(2)reduction performance to yield NH_3(346.25μmol/(g h)),which is significantly higher than those of 3 wt%CQDs/BiOCl(256.04μmol/(g h)),7 wt%CQDs/BiOCl(254.07μmol/(g h)),and bare BiOCl(240.19μmol/(g h)).Our systematic characterizations revealed that the key role of CQDs in improving photocatalytic performance is due to their increased light harvesting capacity,remarkable electron transfer ability,and higher photocatalytic activity sites. 展开更多
关键词 Carbon quantum dots BiOCl Rhodamine B TETRACYCLINE PHOTOCATALYSIS
下载PDF
Biomass-derived hard carbon microtubes with tunable apertures for high-performance sodium-ion batteries 被引量:3
2
作者 Pin Song Shiqiang Wei +12 位作者 Jun Di Jun Du Wenjie Xu Daobin Liu Changda Wang Sicong Qiao yuyang cao Qilong Cui Pengjun Zhang Liaobo Ma Jiewu Cui Yan Wang Yujie Xiong 《Nano Research》 SCIE EI CSCD 2023年第4期4874-4879,共6页
Sodium-ion batteries(SIBs)are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium.However,due to the bigger radius,it is still a great challenge t... Sodium-ion batteries(SIBs)are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium.However,due to the bigger radius,it is still a great challenge to develop anode materials with suitable space for the intercalation of sodium ions.Herein,we present hard carbon microtubes(HCTs)with tunable apertures derived from low-cost natural kapok fibers via a carbonization process for SIBs.The resulted HCTs feature with smaller surface area and shorter Na+diffusion path benefitting from their unique micro-nano structure.Most importantly,the wall thickness of HCTs could be regulated and controlled by the carbonization temperature.At a high temperature of 1,600℃,the carbonized HCTs possess the smallest wall thickness,which reduces the diffusion barrier of Na+and enhances the reversibility Na+storage.As a result,the 1600HCTs deliver a high initial Coulombic efficiency of 90%,good cycling stability(89.4%of capacity retention over 100 cycles at 100 mA·g^(−1)),and excellent rate capacity.This work not only charts a new path for preparing hard carbon materials with adequate ion channels and novel tubular micro-nano structures but also unravels the mechanism of hard carbon materials for sodium storage. 展开更多
关键词 hard carbon kapok fibers sodium-ion batteries(SIBs) reversible capacity long cycle life
原文传递
Interfacial electronic interaction enabling exposed Pt(110)facets with high specific activity in hydrogen evolution reaction 被引量:1
3
作者 Sicong Qiao Qun He +7 位作者 Quan Zhou Yuzhu Zhou Wenjie Xu Hongwei Shou yuyang cao Shuangming Chen Xiaojun Wu Li Song 《Nano Research》 SCIE EI CSCD 2023年第1期174-180,共7页
To achieve a complete industrial chain of hydrogen energy,the development of efficient electrocatalysts for hydrogen evolution reaction(HER)is of great concerns.Herein,a nickel nitride supported platinum(Pt)catalyst w... To achieve a complete industrial chain of hydrogen energy,the development of efficient electrocatalysts for hydrogen evolution reaction(HER)is of great concerns.Herein,a nickel nitride supported platinum(Pt)catalyst with highly exposed Pt(110)facets(Pt_((110))-Ni_(3)N)is obtained for catalyzing HER.Combined X-ray spectra and density functional theory studies demonstrate that the interfacial electronic interaction between Pt and Ni3N support can promote the hydrogen evolution on Pt(110)facets by weakening hydrogen adsorption.As a result,the Pt_((110))-Ni_(3)N catalyst delivers an obviously higher specific activity than commercial 20 wt.%Pt/C in acidic media.This work suggests that the suitable interface modulation may play a vital role in rationally designing advanced electrocatalysts. 展开更多
关键词 Interfacial electronic interaction hydrogen evolution reaction X-ray spectroscopy Pt(110)facets density functional theory
原文传递
Interface regulation of Cu_(2)Se via Cu–Se–C bonding for superior lithium-ion batteries
4
作者 Kefu Zhu Shiqiang Wei +13 位作者 Quan Zhou Shuangming Chen Yunxiang Lin Pengjun Zhang yuyang cao Changda Wang Yixiu Wang Yujian Xia Dengfeng cao Zeinab Mohamed Xin Guo Xiya Yang Xiaojun Wu Li Song 《Nano Research》 SCIE EI CSCD 2023年第2期2421-2427,共7页
Transition metal selenides have aroused great attention in recent years due to their high theoretical capacity.However,the huge volume fluctuation generated by conversion reaction during the charge/discharge process r... Transition metal selenides have aroused great attention in recent years due to their high theoretical capacity.However,the huge volume fluctuation generated by conversion reaction during the charge/discharge process results in the significant electrochemical performance reduction.Herein,the carbon-regulated copper(I)selenide(Cu_(2)Se@C)is designed to significantly promote the interface stability and ion diffusion for selenide electrodes.The systematic X-ray spectroscopies characterizations and density functional theory(DFT)simulations reveal that the Cu–Se–C bonding forming on the surface of Cu2Se not only improves the electronic conductivity of Cu_(2)Se@C but also retards the volume change during electrochemical cycling,playing a pivotal role in interface regulation.Consequently,the storage kinetics of Cu_(2)Se@C is mainly controlled by the capacitance process diverting from the ion diffusion-controlled process of Cu2Se.When employed this distinctive Cu_(2)Se@C as anode active material in Li coin cell configuration,the ultrahigh specific capacity of 810.3 mA·h·g^(−1)at 0.1 A·g^(−1)and the capacity retention of 83%after 1,500 cycles at 5 A·g^(−1)is achieved,implying the best Cu-based Li^(+)-storage capacity reported so far.This strategy of heterojunction combined with chemical bonding regulation opens up a potential way for the development of advanced electrodes for battery storage systems. 展开更多
关键词 Cu–Se–C bonding interface regulation lithium-ion battery X-ray absorption spectroscopy(XAS) operando synchrotron radiation X-ray diffraction(SRXRD)
原文传递
Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries 被引量:6
5
作者 Xin Guo Changda Wang +13 位作者 Wenjie Wang Quan Zhou Wenjie Xu Pengjun Zhang Shiqiang Wei yuyang cao Kefu Zhu Zhanfeng Liu Xiya Yang Yixiu Wang Xiaojun Wu Li Song Shuangming Chen Xiaosong Liu 《Nano Research Energy》 2022年第3期18-26,共9页
“Intrinsic”strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance.Nevertheless,the structure–activity ... “Intrinsic”strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance.Nevertheless,the structure–activity relationship between defects and charge storage is ambiguous,which may be revealed by constructing highly ordered vacancy structures.Herein,we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies(Mo_(1.33)CT_(x)),by utilizing selective etching strategies.Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of+4.44 compared with the control Mo_(2)CT_(x).Benefited from the introduced atomic active sites and high valence of Mo,Mo_(1.33)CT_(x)achieves an outstanding capacity of 603 mAh·g^(−1)at 0.2 A·g^(−1),superior to most original MXenes.Li+storage kinetics analysis and density functional theory(DFT)simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process,which enhances Faraday reaction compared with pure Mo_(2)CT_(x).This vacancy manipulation provides an efficient way to realize MXene’s potential as promising electrodes. 展开更多
关键词 ordered vacancies MXenes X-ray absorption fine structure(XAFS) lithium-ion storage mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部