A composite scaffold composed of a porous scaffold and hydrogel filling can facilitate engraftment,survival,and retention in cell transplantation processes.This study presents a composite scaffold made of poly(ε-capr...A composite scaffold composed of a porous scaffold and hydrogel filling can facilitate engraftment,survival,and retention in cell transplantation processes.This study presents a composite scaffold made of poly(ε-caprolactone)(PCL)and methacrylated hyaluronic acid(MeHA)hydrogel and describes the corresponding physical properties(surface area,porosity,and mechanical strength)and host response(angiogenesis and fibrosis)after subcutaneous transplantation.Specifically,we synthesise MeHA with different degrees of substitution and fabricate a PCL scaffold with different porosities.Subsequently,we construct a series of PCL/MeHA composite scaffolds by combining these hydrogels and scaffolds.In experiments with mice,the scaffold composed of 3%PCL and 10-100 kDa,degree of substitution 70%MeHA results in the least fibrosis and a higher degree of angiogenesis.This study highlights the potential of PCL/MeHA composite scaffolds for subcutaneous cell transplantation,given their desirable physical properties and host response.展开更多
Chemodynamic therapy(CDT),a noninvasive strategy,has emerged as a promising alternative to conventional chemotherapy for treating tumors.However,its therapeutic effect is limited by the amount of H_(2)O_(2),pH value,t...Chemodynamic therapy(CDT),a noninvasive strategy,has emerged as a promising alternative to conventional chemotherapy for treating tumors.However,its therapeutic effect is limited by the amount of H_(2)O_(2),pH value,the hypoxic environment of tumors,and it has suboptimal tumor-targeting ability.In this study,tumor cell membrane-camouflaged mesoporous Fe_(3)O_(4) nanoparticles loaded with perfluoropentane(PFP)and glucose oxidase(GOx)are used as a tumor microenvironment-adaptive nanoplatform(M-mFeP@O_(2)-G),which synergistically enhances the antitumor effect of CDT.Mesoporous Fe_(3)O_(4) nanoparticles are selected as inducers for photothermal and Fenton reactions and as nanocarriers.GOx depletes glucose within tumor cells for starving the cells,while producing H2O2 for subsequent⋅OH generation.Moreover,PFP,which can carry O_(2),relieves hypoxia in tumor cells and provides O_(2) for the cascade reaction.Finally,the nanoparticles are camouflaged with osteosarcoma cell membranes,endowing the nanoparticles with homologous targeting and immune escape abilities.Both in vivo and in vitro evaluations reveal high synergistic therapeutic efficacy of M-mFeP@O_(2)-G,with a desirable tumor-inhibition rate(90.50%),which indicates the great potential of this platform for clinical treating cancer.展开更多
Transdermal drug delivery systems(TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch...Transdermal drug delivery systems(TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch worn on the skin surface to deliver medication through the skin. They can generally be grouped into passive and active types, depending on the properties of materials,design principles and integrated devices. This review describes the latest advancement in the development of wearable patches, focusing on the integration of stimulus-responsive materials and electronics.This development is deemed to provide a dosage, temporal, and spatial control of therapeutics delivery.展开更多
The invasion of etched dentinal tubules(DTs)by external substances induces dentin hypersensitivity(DH).The deep and compact occlusion of DTs is highly desirable for treating DH but still challenging due to the limited...The invasion of etched dentinal tubules(DTs)by external substances induces dentin hypersensitivity(DH).The deep and compact occlusion of DTs is highly desirable for treating DH but still challenging due to the limited penetrability and mineralization capacities of most current desensitizers.Matrix vesicles(MVs)participate in the regulation of ectopic mineralization.Herein,ectopic MV analogs are prepared by employing natural cell membranes to endow mineral precursors with natural biointerfaces and integrated biofunctions for stimulating dentin remineralization.The analogs quickly access DTs(>20μm)in only 5 min and further penetrate deep into the interior of DTs(an extraordinary~200μm)in 7 days.Both in vitro and in vivo studies confirm that the DTs are efficiently sealed by the newly formed minerals(>50μm)with excellent resistance to wear and acid erosion,which is significantly deeper than most reported values.After repair,the microhardness of the damaged dentin can be recovered to those of healthy dentin.For the first time,cell membrane coating nanotechnology is used as a facile and efficient therapy for in-depth remineralization of DTs in treating DH with thorough and long-term effects,which provides insights into their potential for hard tissue repair.展开更多
基金supported by Collaborative Research Fund from the Research Grants Council(RGC)of the Hong Kong Special Administrative Region China,No.C5044-21GResearch Institute of Tsinghua at Pearl River Delta,No.9239094(both to CX).
文摘A composite scaffold composed of a porous scaffold and hydrogel filling can facilitate engraftment,survival,and retention in cell transplantation processes.This study presents a composite scaffold made of poly(ε-caprolactone)(PCL)and methacrylated hyaluronic acid(MeHA)hydrogel and describes the corresponding physical properties(surface area,porosity,and mechanical strength)and host response(angiogenesis and fibrosis)after subcutaneous transplantation.Specifically,we synthesise MeHA with different degrees of substitution and fabricate a PCL scaffold with different porosities.Subsequently,we construct a series of PCL/MeHA composite scaffolds by combining these hydrogels and scaffolds.In experiments with mice,the scaffold composed of 3%PCL and 10-100 kDa,degree of substitution 70%MeHA results in the least fibrosis and a higher degree of angiogenesis.This study highlights the potential of PCL/MeHA composite scaffolds for subcutaneous cell transplantation,given their desirable physical properties and host response.
基金The authors thank the financial support from National Natural Science Foundation of China(51925304,52173140 and 51803173)Sichuan Science and Technology Program(2021YJ0192)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2020-4-13).
文摘Chemodynamic therapy(CDT),a noninvasive strategy,has emerged as a promising alternative to conventional chemotherapy for treating tumors.However,its therapeutic effect is limited by the amount of H_(2)O_(2),pH value,the hypoxic environment of tumors,and it has suboptimal tumor-targeting ability.In this study,tumor cell membrane-camouflaged mesoporous Fe_(3)O_(4) nanoparticles loaded with perfluoropentane(PFP)and glucose oxidase(GOx)are used as a tumor microenvironment-adaptive nanoplatform(M-mFeP@O_(2)-G),which synergistically enhances the antitumor effect of CDT.Mesoporous Fe_(3)O_(4) nanoparticles are selected as inducers for photothermal and Fenton reactions and as nanocarriers.GOx depletes glucose within tumor cells for starving the cells,while producing H2O2 for subsequent⋅OH generation.Moreover,PFP,which can carry O_(2),relieves hypoxia in tumor cells and provides O_(2) for the cascade reaction.Finally,the nanoparticles are camouflaged with osteosarcoma cell membranes,endowing the nanoparticles with homologous targeting and immune escape abilities.Both in vivo and in vitro evaluations reveal high synergistic therapeutic efficacy of M-mFeP@O_(2)-G,with a desirable tumor-inhibition rate(90.50%),which indicates the great potential of this platform for clinical treating cancer.
基金support by Strategic Interdisciplinary Research Grant (7020029) from City University of Hong KongGeneral Research Fund (GRF) grant from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China (City U 11200820, 11202222)+2 种基金the Mainland/Hong Kong Joint Research Scheme sponsored by the RGC Hong Kongthe National Natural Science Foundation of China (N_City U118/20)the Inno HK funding support from the Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE)。
文摘Transdermal drug delivery systems(TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch worn on the skin surface to deliver medication through the skin. They can generally be grouped into passive and active types, depending on the properties of materials,design principles and integrated devices. This review describes the latest advancement in the development of wearable patches, focusing on the integration of stimulus-responsive materials and electronics.This development is deemed to provide a dosage, temporal, and spatial control of therapeutics delivery.
基金the National Natural Science Foundation of China(Nos.51925304,51903175,and 51973133).
文摘The invasion of etched dentinal tubules(DTs)by external substances induces dentin hypersensitivity(DH).The deep and compact occlusion of DTs is highly desirable for treating DH but still challenging due to the limited penetrability and mineralization capacities of most current desensitizers.Matrix vesicles(MVs)participate in the regulation of ectopic mineralization.Herein,ectopic MV analogs are prepared by employing natural cell membranes to endow mineral precursors with natural biointerfaces and integrated biofunctions for stimulating dentin remineralization.The analogs quickly access DTs(>20μm)in only 5 min and further penetrate deep into the interior of DTs(an extraordinary~200μm)in 7 days.Both in vitro and in vivo studies confirm that the DTs are efficiently sealed by the newly formed minerals(>50μm)with excellent resistance to wear and acid erosion,which is significantly deeper than most reported values.After repair,the microhardness of the damaged dentin can be recovered to those of healthy dentin.For the first time,cell membrane coating nanotechnology is used as a facile and efficient therapy for in-depth remineralization of DTs in treating DH with thorough and long-term effects,which provides insights into their potential for hard tissue repair.