Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with ...Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with a spatial resolution of approximately 0.2°×0.2°during 1980–2019.The newly developed precipitation product was validated at different temporal scales(e.g.,monthly,seasonally,and annually).The results show that the new product consistently aligns with the spatiotemporal distributions reported by the Chinese Meteorological Administration Land Data Assimilation System(CLDAS)product and Multi-Source Weighted Ensemble Precipitation(MSWEP).The merged product exhibits exceptional quality in describing the drylands of China,with a bias of–2.19 mm month^(–1)relative to MSWEP.In addition,the annual trend of the merged product(0.09 mm month^(–1)yr^(−1))also closely aligns with that of the MSWEP(0.11 mm month^(–1)yr^(−1))during 1980–2019.The increasing trend indicates that the water cycle and wetting process intensified in the drylands of China during this period.In particular,there was an increase in wetting during the period from 2001–2019.Generally,the merged product exhibits potential value for improving our understanding of the climate and water cycle in the drylands of China.展开更多
Objectives:Human epidermal growth factor receptor 2(HER2)-targeted therapies have demonstrated potential benefits for metastatic colorectal cancer(mCRC)patients with HER2 amplification,but are not satisfactory in case...Objectives:Human epidermal growth factor receptor 2(HER2)-targeted therapies have demonstrated potential benefits for metastatic colorectal cancer(mCRC)patients with HER2 amplification,but are not satisfactory in cases of HER2 mutant CRCs.Methods:Consequently,further elucidation of amplifications and somatic mutations in erythroblastic oncogene B-2(ERBB2)is imperative.Comprehensive genomic profiling was conducted on 2454 Chinese CRC cases to evaluate genomic alterations in 733 cancer-related genes,tumor mutational burden,microsatellite instability,and programmed death ligand 1(PD-L1)expression.Results:Among 2454 CRC patients,85 cases(3.46%)exhibited ERBB2 amplification,and 55 cases(2.24%)carried ERBB2 mutation.p.R678Q(28%),p.V8421(24%),and p.S310F/Y(12%)were the most prevalent of the 16 detected mutation sites.In comparison to the ERBB2 altered(alt)group,KRAS/BRAF mutations were more prevalent in ERBB2 wild-type(wt)samples(ERBB2wt vs.ERBB2alt,KRAS:50.9%vs.25.6%,p<0.05;BRAF:8.5%vs.2.3%,p<0.05).32.7%(18/55)of CRCs with ERBB2 mutation exhibited microsatellite instability high(MSI-H),while no cases with HER2 amplification displayed MSI-H.Mutant genes varied between ERBB2 copy number variation(CNV)and ERBB2 single nucleotide variant(SNV);TP53 alterations tended to co-occur with ERBB2 amplification(92.3%)as opposed to ERBB2 mutation(58.3%).KRAS and PIK3CA alterations were more prevalent in ERBB2 SNV cases(KRAS/PIK3CA:45.8%/31.2%)compared to ERBB2 amplification cases(KRAS/PIK3CA:14.1%/7.7%).Conclusion:Our study delineates the landscape of HER2 alterations in a large-scale cohort of CRC patients from China.These findings enhance our understanding of the molecular features of Chinese CRC patients and offer valuable implications for further investigation.展开更多
In this study, a combination of satellite observations and reanalysis datasets is used to analyze the spatiotemporal distribution, classification and source of pollutants over the eastern slope of the Tibetan Plateau(...In this study, a combination of satellite observations and reanalysis datasets is used to analyze the spatiotemporal distribution, classification and source of pollutants over the eastern slope of the Tibetan Plateau(ESTP). The aerosol optical depth(AOD) over the ESTP is extremely large and even larger than some important industrialized regions and deserts. The main aerosol component over the ESTP is sulfate, followed by carbonaceous and dust aerosols. Local emissions related to human activity directly contribute to the accumulation of sulfate and carbonaceous aerosols over the Sichuan Basin. In addition, in spring, abundant carbonaceous aerosols emitted from forest, grassland and savanna fires in Southeast Asia can be transported by the prevailing southwesterly wind to southern China and the ESTP. The dust AOD over the ESTP peaks in spring because of the transport from the Taklimakan and Gobi deserts. Additionally, the high aerosol loading over the ESTP is also directly related to the meteorological background. Due to the special topography, the terrain-driven circulation can trap aerosols in the Sichuan Basin and these aerosols can climb along the ESTP due to the perennial updraft. The aerosol loading is lowest in summer because of effective wet deposition induced by the strong precipitation and better dispersion conditions due to the larger vertical temperature gradients and ascending air movement enhanced by the plateau heat pump effect. In contrast,the aerosol loading is greatest in winter. Abundant anthropogenic aerosols over the ESTP may generate some climatic and environmental risks and consequently greatly influence the downstream regions.展开更多
We systematically test the performance of several Monte Carlo update schemes for the(2+1)d XY phase transition of quantum rotor model.By comparing the local Metropolis(LM),LM plus over-relaxation(OR),Wolff-cluster(WC)...We systematically test the performance of several Monte Carlo update schemes for the(2+1)d XY phase transition of quantum rotor model.By comparing the local Metropolis(LM),LM plus over-relaxation(OR),Wolff-cluster(WC),hybrid Monte Carlo(HM),hybrid Monte Carlo with Fourier acceleration(FA)schemes,it is clear that among the five different update schemes,at the quantum critical point,the WC and FA schemes acquire the smallest autocorrelation time and cost the least amount of CPU hours in achieving the same level of relative error,and FA enjoys a further advantage of easily implementable for more complicated interactions such as the long-range ones.These results bestow one with the necessary knowledge of extending the quantum rotor model,which plays the role of ferromagnetic/antiferromagnetic critical bosons or Z_(2)topological order,to more realistic and yet challenging models such as Fermi surface Yukawa-coupled to quantum rotor models.展开更多
Taklamakan Desert(TD)has been characterized by numerous heatwaves and dust storms,leading to negative effects on societies and ecosystems at regional and global scales.However,the association between heatwaves and dus...Taklamakan Desert(TD)has been characterized by numerous heatwaves and dust storms,leading to negative effects on societies and ecosystems at regional and global scales.However,the association between heatwaves and dust storms is poorly known.In this study,we describe the association between heatwaves and dust events and propose a mechanism for such compound events in the TD.The results show that,from 1993 to 2022,the frequency and intensity of heatwaves in the TD have increased at a rate of 0.21 days year^(-1)and 0.02℃ year^(-1),respectively.More than 40% of heatwaves existed with dust events,which significantly lagged behind heatwaves.Mechanically,the higher the air temperature,the hotter and drier the soil,leading to more dust emissions in the TD.In high-occurrence heatwave years,a large-scale wave train of“cyclone-anticyclone-cyclone”in the northwest-southeast direction was found,with the anticyclone of which hovered over the TD region.The anomalous anticyclones favored the formation and maintenance of heatwaves,and subsequent anomalous cyclones in the wave train triggered strong dust events followed by heatwaves.With climate warming,the compound events of heatwave and dust storm are becoming bigger hazards threatening the socioeconomic and ecological security in the TD,the profound study of which is critical to understanding regional extreme responses.展开更多
The subject of“atmospheric radiation”includes not only fundamental theories on atmospheric gaseous absorption and the scattering and radiative transfer of particles(molecules,cloud,and aerosols),but also their appli...The subject of“atmospheric radiation”includes not only fundamental theories on atmospheric gaseous absorption and the scattering and radiative transfer of particles(molecules,cloud,and aerosols),but also their applications in weather,climate,and atmospheric remote sensing,and is an essential part of the atmospheric sciences.This review includes two parts(Part I and PartⅡ);following the first part on gaseous absorption and particle scattering,this part(PartⅡ)reports the progress that has been made in radiative transfer theories,models,and their common applications,focusing particularly on the contributions from Chinese researchers.The recent achievements on radiative transfer models and methods developed for weather and climate studies and for atmospheric remote sensing are firstly reviewed.Then,the associated applications,such as surface radiation estimation,satellite remote sensing algorithms,radiative parameterization for climate models,and radiative-forcing related climate change studies are summarized,which further reveals the importance of radiative transfer theories and models.展开更多
The effect of copper addition to 2205 duplex stainless steel(DSS) on its resistance against pitting corrosion by the Pseudomonas aeruginosa biofilm was investigated using electrochemical and surface analysis techniq...The effect of copper addition to 2205 duplex stainless steel(DSS) on its resistance against pitting corrosion by the Pseudomonas aeruginosa biofilm was investigated using electrochemical and surface analysis techniques. Cu addition decreased the general corrosion resistance, resulting in a higher general corrosion rate in the sterile medium. Because DSS usually has a very small general corrosion rate, its pitting corrosion resistance is far more important. In this work, it was shown that 2205-3%Cu DSS exhibited a much higher pitting corrosion resistance against the P. aeruginosa biofilm compared with the 2205 DSS control, characterized by no significant change in the pitting potential and critical pitting temperature(CPT) values. The strong pitting resistance ability of 2205-3%Cu DSS could be attributed to the copper-rich phases on the surface and the release of copper ions, providing a strong antibacterial ability that inhibited the attachment and growth of the corrosive P. aeruginosa biofilm.展开更多
East Asian dust(EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation eff...East Asian dust(EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990 s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research,including dust emissions, long-range transport, radiative forcing(RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.展开更多
The arid and semi-arid(ASA) region of Asia occupies a large area in the middle latitudes of the Northern Hemisphere, of which the main body is the ASA region of Central and East Asia(CEA). In this region, the climate ...The arid and semi-arid(ASA) region of Asia occupies a large area in the middle latitudes of the Northern Hemisphere, of which the main body is the ASA region of Central and East Asia(CEA). In this region, the climate is fragile and the environment is sensitive. The eastern part of the ASA region of CEA is located in the marginal zone of the East Asian monsoon and is jointly influenced by westerly circulation and the monsoon system, while in the western part of the ASA of CEA,the climate is mainly controlled by westerly circulation. To understand and predict the climate over this region, it is necessary to investigate the influence of general circulation on the climate system over the ASA region of CEA. In this paper, recent progress in understanding the relationship between the general circulation and climate change over the ASA region is systematically reviewed. Previous studies have demonstrated that atmospheric circulation represents a significant factor in climate change over the ASA region of CEA. In the years with a strong East Asian summer monsoon, the water vapor flux increases and precipitation is abundant in the southeastern part of Northwest China. The opposite situation occurs in years when the East Asian summer monsoon is weak. With the weakening of the East Asian summer monsoon, the climate tends to dry over the semi-arid region located in the monsoon marginal zone. Recently, owing to the strengthening of the South Asian monsoon, more water vapor has been transported to the ASA region of Asia. The Plateau summer monsoon intensity and the precipitation in summer exhibit a significant positive correlation in Central Asia but a negative correlation in North China and Mongolia. A significant positive correlation also exists between the westerly index and the temperature over the arid region of CEA. The change in the westerly circulation may be the main factor affecting precipitation over the arid region of Central Asia.展开更多
This paper concerns about the episodes of PM2.5 pollution that frequently occur in China in winter months.The severity of PM2.5 pollution is strongly dependent on the synoptic-scale atmospheric conditions.We combined ...This paper concerns about the episodes of PM2.5 pollution that frequently occur in China in winter months.The severity of PM2.5 pollution is strongly dependent on the synoptic-scale atmospheric conditions.We combined PM2.5 concentration data and meteorological data with the Hybrid Single Particle Lagrangian Integrated Trajectory model(HYSPLIT4)to investigate the dominant synoptic patterns and their relationships with PM2.5 pollution over the Beijing–Tianjin–Hebei(BTH)and Yangtze River Delta(YRD)regions in the winters of 2014–17.The transport of PM2.5 from the BTH to YRD regions was examined by using cluster analysis and HYSPLIT4.It is found that the level of PM2.5 pollution over the BTH region was higher than that over the YRD region.The concentration of PM2.5 in the atmosphere was more closely related to meteorological factors over the BTH region.The episodes of PM2.5 pollution over the BTH region in winter were related to weather patterns such as the rear of a high-pressure system approaching the sea,a high-pressure field,a saddle pressure field,and the leading edge of a cold front.By contrast,PM2.5 pollution episodes in the YRD region in winter were mainly associated with the external transport of cold air,a high-pressure field,and a uniform pressure field.Cluster analysis shows that the trajectories of PM2.5 were significantly different under different weather patterns.PM2.5 would be transported from the BTH to the YRD within 48 h when the PM2.5 pollution episodes were associated with three different kinds of weather patterns:the rear of a highpressure system approaching the sea,the high-pressure field,and the leading edge of a cold front over the BTH region.This suggests a possible method to predict PM2.5 pollution episodes based on synoptic-scale patterns.展开更多
Based on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evalu...Based on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the day-time CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aer-osol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth's Radiant En- ergy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aero- sol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day^-1 de-pending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The signific-ant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.展开更多
In vitro,carp blood was anticoagulated by using MgSO4 at a final concentration of 22.2 mmol L-1 and sodium citrate at a final concentration of 11.8 mmol L-1.The coagulation times for carp plasma diluted by ion-free wa...In vitro,carp blood was anticoagulated by using MgSO4 at a final concentration of 22.2 mmol L-1 and sodium citrate at a final concentration of 11.8 mmol L-1.The coagulation times for carp plasma diluted by ion-free water(1:1),and that of carp plasma to which thrombocytes and small lymphocytes were added,were measured at 23℃ using standard methods,and then contrasted with the coagulation times for plasma obtained from chickens and rabbits.The shapes of the thrombocytes and small lymphocytes,which were either wet mounted or stained with hematoxylin and eosin,were observed under a light microscope.We found that:(i)the coagulation reaction of carp blood was significantly(P<0.01)accelerated by the addition of ion-free water;(ii)the three types of blood cells(thrombocytes,small lymphocytes and red blood cells)promoted plasma coagulation to a similar extent(P>0.05);(iii)in carp Mg^(2+)plasma and K_(2)C_(2)O_(4) plasma,the thrombocytes were usually morphologically normal,but many small lymphocytes were destroyed and became aggregated;(iv)in the citrate plasma,thrombocytes were often aggregated,but the small lymphocytes were usually morphologically normal;and(v)the coagulation time for chicken and rabbit plasma was significantly extended by adding ion-free water.展开更多
Northwest China is recognized as a main source and a major transport channel of dust aerosols in East Asia.With a fragile ecological environment,this region is quite sensitive to global climate change.Based on the sat...Northwest China is recognized as a main source and a major transport channel of dust aerosols in East Asia.With a fragile ecological environment,this region is quite sensitive to global climate change.Based on the satellite-derived aerosol three-dimensional distribution,the direct radiative effects of dust aerosols over Northwest China are evaluated.Aerosols over Northwest China are mainly distributed in the Tarim Basin,Junggar Basin,Gobi Desert,and Loess Plateau.The aerosol extinction coefficients are greater than 0.36 km-1 over the Tarim Basin and 0.16 km^(-1) over the Gobi Desert and Loess Plateau,decreasing with height.Aerosols over Northwest China are mainly composed of pure dust and polluted dust.These dust aerosols can modify the horizontal temperature gradient,vertical thermodynamic structure,and diurnal temperature range by absorbing and scattering shortwave radiation and emitting longwave radiation.For the column atmosphere,the radiative effect of dust aerosols shows heating effect of approximately 0.3 K day^(-1) during the daytime and cooling effect of approximately-0.4 K day^(-1) at night.In the vertical direction,dust aerosols can heat up the lower atmosphere(0.5–1.5 K day^(-1))and cool down the upper atmosphere(about-1.0 K day^(-1))during the daytime,while they cool down the lower atmosphere(-3 to-1.5 K day^(-1))and heat up the upper atmosphere(1–1.5 K day^(-1))at night.There are also significant lateral and vertical variations in the dust radiative effects corresponding to their spatial distributions.This study provides some scientific basis for reducing uncertainty in the investigation of aerosol radiative effects and provides observation evidence for simulation studies.展开更多
基金supported by the National Natural Science Foundation of China the National Natural Science Foundation of China(Grant No.41991231)the Fundamental Research Funds for the Central Universities(lzujbky-2022-kb11).
文摘Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with a spatial resolution of approximately 0.2°×0.2°during 1980–2019.The newly developed precipitation product was validated at different temporal scales(e.g.,monthly,seasonally,and annually).The results show that the new product consistently aligns with the spatiotemporal distributions reported by the Chinese Meteorological Administration Land Data Assimilation System(CLDAS)product and Multi-Source Weighted Ensemble Precipitation(MSWEP).The merged product exhibits exceptional quality in describing the drylands of China,with a bias of–2.19 mm month^(–1)relative to MSWEP.In addition,the annual trend of the merged product(0.09 mm month^(–1)yr^(−1))also closely aligns with that of the MSWEP(0.11 mm month^(–1)yr^(−1))during 1980–2019.The increasing trend indicates that the water cycle and wetting process intensified in the drylands of China during this period.In particular,there was an increase in wetting during the period from 2001–2019.Generally,the merged product exhibits potential value for improving our understanding of the climate and water cycle in the drylands of China.
基金sponsored by National Natural Science Foundation of China(Grant Numbers 81972280,81972290)Natural Science Foundation of Shanghai(Grant Number 23ZR1452300)+2 种基金Research Grant for Health Science and Technology of Pudong Health Bureau of Shanghai(Grant Number PW2022E-02)Academic Leaders Training Program of Pudong Health Bureau of Shanghai(Grant Number PWRd2022-02)Foundation of Beijing CSCO Clinical Oncology Research(Grant Number Y-HR2019-0384).
文摘Objectives:Human epidermal growth factor receptor 2(HER2)-targeted therapies have demonstrated potential benefits for metastatic colorectal cancer(mCRC)patients with HER2 amplification,but are not satisfactory in cases of HER2 mutant CRCs.Methods:Consequently,further elucidation of amplifications and somatic mutations in erythroblastic oncogene B-2(ERBB2)is imperative.Comprehensive genomic profiling was conducted on 2454 Chinese CRC cases to evaluate genomic alterations in 733 cancer-related genes,tumor mutational burden,microsatellite instability,and programmed death ligand 1(PD-L1)expression.Results:Among 2454 CRC patients,85 cases(3.46%)exhibited ERBB2 amplification,and 55 cases(2.24%)carried ERBB2 mutation.p.R678Q(28%),p.V8421(24%),and p.S310F/Y(12%)were the most prevalent of the 16 detected mutation sites.In comparison to the ERBB2 altered(alt)group,KRAS/BRAF mutations were more prevalent in ERBB2 wild-type(wt)samples(ERBB2wt vs.ERBB2alt,KRAS:50.9%vs.25.6%,p<0.05;BRAF:8.5%vs.2.3%,p<0.05).32.7%(18/55)of CRCs with ERBB2 mutation exhibited microsatellite instability high(MSI-H),while no cases with HER2 amplification displayed MSI-H.Mutant genes varied between ERBB2 copy number variation(CNV)and ERBB2 single nucleotide variant(SNV);TP53 alterations tended to co-occur with ERBB2 amplification(92.3%)as opposed to ERBB2 mutation(58.3%).KRAS and PIK3CA alterations were more prevalent in ERBB2 SNV cases(KRAS/PIK3CA:45.8%/31.2%)compared to ERBB2 amplification cases(KRAS/PIK3CA:14.1%/7.7%).Conclusion:Our study delineates the landscape of HER2 alterations in a large-scale cohort of CRC patients from China.These findings enhance our understanding of the molecular features of Chinese CRC patients and offer valuable implications for further investigation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91737101 and 91744311)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA2006010301)
文摘In this study, a combination of satellite observations and reanalysis datasets is used to analyze the spatiotemporal distribution, classification and source of pollutants over the eastern slope of the Tibetan Plateau(ESTP). The aerosol optical depth(AOD) over the ESTP is extremely large and even larger than some important industrialized regions and deserts. The main aerosol component over the ESTP is sulfate, followed by carbonaceous and dust aerosols. Local emissions related to human activity directly contribute to the accumulation of sulfate and carbonaceous aerosols over the Sichuan Basin. In addition, in spring, abundant carbonaceous aerosols emitted from forest, grassland and savanna fires in Southeast Asia can be transported by the prevailing southwesterly wind to southern China and the ESTP. The dust AOD over the ESTP peaks in spring because of the transport from the Taklimakan and Gobi deserts. Additionally, the high aerosol loading over the ESTP is also directly related to the meteorological background. Due to the special topography, the terrain-driven circulation can trap aerosols in the Sichuan Basin and these aerosols can climb along the ESTP due to the perennial updraft. The aerosol loading is lowest in summer because of effective wet deposition induced by the strong precipitation and better dispersion conditions due to the larger vertical temperature gradients and ascending air movement enhanced by the plateau heat pump effect. In contrast,the aerosol loading is greatest in winter. Abundant anthropogenic aerosols over the ESTP may generate some climatic and environmental risks and consequently greatly influence the downstream regions.
基金the supports from the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the RGC of Hong Kong SAR of China(Grant Nos.17303019,17301420,and AoE/P-701/20)。
文摘We systematically test the performance of several Monte Carlo update schemes for the(2+1)d XY phase transition of quantum rotor model.By comparing the local Metropolis(LM),LM plus over-relaxation(OR),Wolff-cluster(WC),hybrid Monte Carlo(HM),hybrid Monte Carlo with Fourier acceleration(FA)schemes,it is clear that among the five different update schemes,at the quantum critical point,the WC and FA schemes acquire the smallest autocorrelation time and cost the least amount of CPU hours in achieving the same level of relative error,and FA enjoys a further advantage of easily implementable for more complicated interactions such as the long-range ones.These results bestow one with the necessary knowledge of extending the quantum rotor model,which plays the role of ferromagnetic/antiferromagnetic critical bosons or Z_(2)topological order,to more realistic and yet challenging models such as Fermi surface Yukawa-coupled to quantum rotor models.
基金supported by the National Natural Science Foundation of China(Grant Nos.41991231 and 91937302)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb11)。
文摘Taklamakan Desert(TD)has been characterized by numerous heatwaves and dust storms,leading to negative effects on societies and ecosystems at regional and global scales.However,the association between heatwaves and dust storms is poorly known.In this study,we describe the association between heatwaves and dust events and propose a mechanism for such compound events in the TD.The results show that,from 1993 to 2022,the frequency and intensity of heatwaves in the TD have increased at a rate of 0.21 days year^(-1)and 0.02℃ year^(-1),respectively.More than 40% of heatwaves existed with dust events,which significantly lagged behind heatwaves.Mechanically,the higher the air temperature,the hotter and drier the soil,leading to more dust emissions in the TD.In high-occurrence heatwave years,a large-scale wave train of“cyclone-anticyclone-cyclone”in the northwest-southeast direction was found,with the anticyclone of which hovered over the TD region.The anomalous anticyclones favored the formation and maintenance of heatwaves,and subsequent anomalous cyclones in the wave train triggered strong dust events followed by heatwaves.With climate warming,the compound events of heatwave and dust storm are becoming bigger hazards threatening the socioeconomic and ecological security in the TD,the profound study of which is critical to understanding regional extreme responses.
基金Supported by the National Natural Science Foundation of China(42122038,42375128,42275039,and 42075125)National Key Research and Development Program of China(2022YFC3701202)。
文摘The subject of“atmospheric radiation”includes not only fundamental theories on atmospheric gaseous absorption and the scattering and radiative transfer of particles(molecules,cloud,and aerosols),but also their applications in weather,climate,and atmospheric remote sensing,and is an essential part of the atmospheric sciences.This review includes two parts(Part I and PartⅡ);following the first part on gaseous absorption and particle scattering,this part(PartⅡ)reports the progress that has been made in radiative transfer theories,models,and their common applications,focusing particularly on the contributions from Chinese researchers.The recent achievements on radiative transfer models and methods developed for weather and climate studies and for atmospheric remote sensing are firstly reviewed.Then,the associated applications,such as surface radiation estimation,satellite remote sensing algorithms,radiative parameterization for climate models,and radiative-forcing related climate change studies are summarized,which further reveals the importance of radiative transfer theories and models.
基金support of the program of Outstanding Young Scholars, the National Natural Science Foundation of China (No. 51371182)financially supported by Shenzhen Science and Technology Research funding (JCYJ20160608153641020)+3 种基金the National Basic Research Program of China (973 Program Project No. 2014CB643300)the National Natural Science Foundation (No. 51501203 and U1660118)the National Environmental Corrosion Platform (NECP)the “Young Merit Scholars” program of the Institute of Metal Research, Chinese Academy of Sciences
文摘The effect of copper addition to 2205 duplex stainless steel(DSS) on its resistance against pitting corrosion by the Pseudomonas aeruginosa biofilm was investigated using electrochemical and surface analysis techniques. Cu addition decreased the general corrosion resistance, resulting in a higher general corrosion rate in the sterile medium. Because DSS usually has a very small general corrosion rate, its pitting corrosion resistance is far more important. In this work, it was shown that 2205-3%Cu DSS exhibited a much higher pitting corrosion resistance against the P. aeruginosa biofilm compared with the 2205 DSS control, characterized by no significant change in the pitting potential and critical pitting temperature(CPT) values. The strong pitting resistance ability of 2205-3%Cu DSS could be attributed to the copper-rich phases on the surface and the release of copper ions, providing a strong antibacterial ability that inhibited the attachment and growth of the corrosive P. aeruginosa biofilm.
基金National Natural Science Foundation of China(41405003 and 41521004)supported by the Office of Science,U.S.Department of Energy(DOE),as part of its Regional and Global Climate Modeling ProgramThe Pacific Northwest National Laboratory is operated for the DOE by the Battelle Memorial Institute under contract DE-AC05-76RL01830
文摘East Asian dust(EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990 s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research,including dust emissions, long-range transport, radiative forcing(RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41475095, 91737101 & 91744311)
文摘The arid and semi-arid(ASA) region of Asia occupies a large area in the middle latitudes of the Northern Hemisphere, of which the main body is the ASA region of Central and East Asia(CEA). In this region, the climate is fragile and the environment is sensitive. The eastern part of the ASA region of CEA is located in the marginal zone of the East Asian monsoon and is jointly influenced by westerly circulation and the monsoon system, while in the western part of the ASA of CEA,the climate is mainly controlled by westerly circulation. To understand and predict the climate over this region, it is necessary to investigate the influence of general circulation on the climate system over the ASA region of CEA. In this paper, recent progress in understanding the relationship between the general circulation and climate change over the ASA region is systematically reviewed. Previous studies have demonstrated that atmospheric circulation represents a significant factor in climate change over the ASA region of CEA. In the years with a strong East Asian summer monsoon, the water vapor flux increases and precipitation is abundant in the southeastern part of Northwest China. The opposite situation occurs in years when the East Asian summer monsoon is weak. With the weakening of the East Asian summer monsoon, the climate tends to dry over the semi-arid region located in the monsoon marginal zone. Recently, owing to the strengthening of the South Asian monsoon, more water vapor has been transported to the ASA region of Asia. The Plateau summer monsoon intensity and the precipitation in summer exhibit a significant positive correlation in Central Asia but a negative correlation in North China and Mongolia. A significant positive correlation also exists between the westerly index and the temperature over the arid region of CEA. The change in the westerly circulation may be the main factor affecting precipitation over the arid region of Central Asia.
基金Supported by the National Natural Science Foundation of China(91744311 and 91737101)
文摘This paper concerns about the episodes of PM2.5 pollution that frequently occur in China in winter months.The severity of PM2.5 pollution is strongly dependent on the synoptic-scale atmospheric conditions.We combined PM2.5 concentration data and meteorological data with the Hybrid Single Particle Lagrangian Integrated Trajectory model(HYSPLIT4)to investigate the dominant synoptic patterns and their relationships with PM2.5 pollution over the Beijing–Tianjin–Hebei(BTH)and Yangtze River Delta(YRD)regions in the winters of 2014–17.The transport of PM2.5 from the BTH to YRD regions was examined by using cluster analysis and HYSPLIT4.It is found that the level of PM2.5 pollution over the BTH region was higher than that over the YRD region.The concentration of PM2.5 in the atmosphere was more closely related to meteorological factors over the BTH region.The episodes of PM2.5 pollution over the BTH region in winter were related to weather patterns such as the rear of a high-pressure system approaching the sea,a high-pressure field,a saddle pressure field,and the leading edge of a cold front.By contrast,PM2.5 pollution episodes in the YRD region in winter were mainly associated with the external transport of cold air,a high-pressure field,and a uniform pressure field.Cluster analysis shows that the trajectories of PM2.5 were significantly different under different weather patterns.PM2.5 would be transported from the BTH to the YRD within 48 h when the PM2.5 pollution episodes were associated with three different kinds of weather patterns:the rear of a highpressure system approaching the sea,the high-pressure field,and the leading edge of a cold front over the BTH region.This suggests a possible method to predict PM2.5 pollution episodes based on synoptic-scale patterns.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA2006010301)National Natural Science Foundation of China(91737101,41475095,and 41405010)+1 种基金Fundamental Research Funds for Central Universities(lzujbky-2017-63)China 111 Project(B13045)
文摘Based on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the day-time CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aer-osol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth's Radiant En- ergy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aero- sol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day^-1 de-pending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The signific-ant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.
基金supported by a grant from the National Natural Science Foundation of China (No.30470225).
文摘In vitro,carp blood was anticoagulated by using MgSO4 at a final concentration of 22.2 mmol L-1 and sodium citrate at a final concentration of 11.8 mmol L-1.The coagulation times for carp plasma diluted by ion-free water(1:1),and that of carp plasma to which thrombocytes and small lymphocytes were added,were measured at 23℃ using standard methods,and then contrasted with the coagulation times for plasma obtained from chickens and rabbits.The shapes of the thrombocytes and small lymphocytes,which were either wet mounted or stained with hematoxylin and eosin,were observed under a light microscope.We found that:(i)the coagulation reaction of carp blood was significantly(P<0.01)accelerated by the addition of ion-free water;(ii)the three types of blood cells(thrombocytes,small lymphocytes and red blood cells)promoted plasma coagulation to a similar extent(P>0.05);(iii)in carp Mg^(2+)plasma and K_(2)C_(2)O_(4) plasma,the thrombocytes were usually morphologically normal,but many small lymphocytes were destroyed and became aggregated;(iv)in the citrate plasma,thrombocytes were often aggregated,but the small lymphocytes were usually morphologically normal;and(v)the coagulation time for chicken and rabbit plasma was significantly extended by adding ion-free water.
基金Supported by the Gansu Provincial Special Fund for Scientific and Technological Innovation and Development(2019ZX-06)Fundamental Research Funds for the Central Universities(lzujbky-2020-kb31)Meteorological Science and Technology Research Project of Shandong Meteorological Bureau(2019sdqxm14)。
文摘Northwest China is recognized as a main source and a major transport channel of dust aerosols in East Asia.With a fragile ecological environment,this region is quite sensitive to global climate change.Based on the satellite-derived aerosol three-dimensional distribution,the direct radiative effects of dust aerosols over Northwest China are evaluated.Aerosols over Northwest China are mainly distributed in the Tarim Basin,Junggar Basin,Gobi Desert,and Loess Plateau.The aerosol extinction coefficients are greater than 0.36 km-1 over the Tarim Basin and 0.16 km^(-1) over the Gobi Desert and Loess Plateau,decreasing with height.Aerosols over Northwest China are mainly composed of pure dust and polluted dust.These dust aerosols can modify the horizontal temperature gradient,vertical thermodynamic structure,and diurnal temperature range by absorbing and scattering shortwave radiation and emitting longwave radiation.For the column atmosphere,the radiative effect of dust aerosols shows heating effect of approximately 0.3 K day^(-1) during the daytime and cooling effect of approximately-0.4 K day^(-1) at night.In the vertical direction,dust aerosols can heat up the lower atmosphere(0.5–1.5 K day^(-1))and cool down the upper atmosphere(about-1.0 K day^(-1))during the daytime,while they cool down the lower atmosphere(-3 to-1.5 K day^(-1))and heat up the upper atmosphere(1–1.5 K day^(-1))at night.There are also significant lateral and vertical variations in the dust radiative effects corresponding to their spatial distributions.This study provides some scientific basis for reducing uncertainty in the investigation of aerosol radiative effects and provides observation evidence for simulation studies.