Wheat resistance to Fusarium head blight(FHB)has often been associated with some undesirable agronomic traits.To study the relationship between wheat FHB resistance and agronomic traits,we constructed a linkage map of...Wheat resistance to Fusarium head blight(FHB)has often been associated with some undesirable agronomic traits.To study the relationship between wheat FHB resistance and agronomic traits,we constructed a linkage map of single nucleotide polymorphisms(SNPs)using an F6:8 population from G97252WG97380A.The two hard winter wheat parents showed contrasts in FHB resistance,plant height(HT),heading date(HD),spike length(SL),spike compactness(SC),kernel number per spike(KNS),spikelet number per spike(SNS),thousand-grain weight(TGW)and grain size(length and width).Quantitative trait locus(QTL)mapping identified one major QTL(QFhb.hwwg-2DS)on chromosome arm 2DS for the percentage of symptomatic spikelets(PSS)in the spike,deoxynivalenol(DON)content and Fusarium damaged kernel(FDK).This QTL explained up to 71.8%of the phenotypic variation for the three FHB-related traits and overlapped with the major QTL for HT,HD,SL,KNS,SNS,TGW,and grain size.QTL on chromosome arms 2AL,2DS,3AL and 4BS were significant for the spike and grain traits measured.G97252W contributed FHB resistance and high SNS alleles at QFhb.hwwg-2DS,high KNS alleles at the QTL on 2AL and 2DS,and high TGW and grain size alleles at QTL on 3AL;whereas G97380A contributed high TGW and grain size alleles at the QTL on 2AL and 2DS,respectively,and the high KNS allele at the 4BS QTL.Combining QFhb.hwwg-2DS with positive alleles for spike and grain traits from other chromosomes may simultaneously improve FHB resistance and grain yield in new cultivars.展开更多
The Hessian fly(HF,Mayetiola destructor)is one of the destructive pests of wheat(Triticum aestivum L.)worldwide.Resistant cultivars can effectively minimize wheat damage due to this insect pest.To identify new quantit...The Hessian fly(HF,Mayetiola destructor)is one of the destructive pests of wheat(Triticum aestivum L.)worldwide.Resistant cultivars can effectively minimize wheat damage due to this insect pest.To identify new quantitative trait loci(QTL)for HF resistance,a population of recombinant inbred lines(RILs)was developed from a cross between the HF-resistant wheat cultivar‘Chokwang’and susceptible wheat‘Ning 7840’,and phenotyped for responses to HF attack.A linkage map was constructed using 1147 single nucleotide polymorphism(SNP)markers generated from genotyping-by-sequencing(GBS).One major QTL,QHf.hwwg-6 BS,for HF-resistance was identified on chromosome arm 6 BS,which explained up to84.0%of the phenotypic variation and was contributed by Chokwang.Two RILs showed recombination in the candidate interval of QHf.hwwg-6 BS,which delimited QHf.hwwg-6 BS to a 4.75 Mb physical interval between 6,028,601 bp and 10,779,424 bp on chromosome arm 6 BS of IWGSC Chinese Spring reference genome Ref Seq v2.0.Seven GBS-SNPs in the candidate interval were converted into Kompetitive allele specific polymerase chain reaction(KASP)markers.Two of them,KASP-6 B112698 and KASP-6 B7901215,were validated in a U.S.winter wheat panel.KASP-6 B112698 was nearly diagnostic,thus can be used to screen QHf.hwwg-6 BS and pyramid it with other resistance genes in breeding programs.展开更多
With the increase in consumer demand,wheat grain quality improvement has become a focus in China and worldwide.Transcriptome analysis is a powerful approach to research grain traits and elucidate their genetic regulat...With the increase in consumer demand,wheat grain quality improvement has become a focus in China and worldwide.Transcriptome analysis is a powerful approach to research grain traits and elucidate their genetic regulation.In this study,two cDNA libraries from the developing grain and leaf-stem components of bread wheat cultivar,Nongda211,were sequenced using Roche/454 technology.There were 1061274 and 1516564 clean reads generated from grain and leaf-stem,respectively.A total of 61393 high-quality unigenes were obtained with an average length of 1456 bp after de novo assembly.The analysis of the 61393 unigenes involved in the biological processes of the grain showed that there were 7355 differentially expressed genes upregulated in the grain library.Gene ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that many transcription products and transcription factors associated with carbohydrate and protein metabolism were abundantly expressed in the grain.These results contribute to excavate genes associated with wheat quality and further study how they interact.展开更多
基金the U.S.Wheat and Barley Scab Initiative and the National Research Initiative Competitive Grants(2022-68013-36439)from the National Institute of Food and Agriculture,U.S.Department of Agriculture(USDA).
文摘Wheat resistance to Fusarium head blight(FHB)has often been associated with some undesirable agronomic traits.To study the relationship between wheat FHB resistance and agronomic traits,we constructed a linkage map of single nucleotide polymorphisms(SNPs)using an F6:8 population from G97252WG97380A.The two hard winter wheat parents showed contrasts in FHB resistance,plant height(HT),heading date(HD),spike length(SL),spike compactness(SC),kernel number per spike(KNS),spikelet number per spike(SNS),thousand-grain weight(TGW)and grain size(length and width).Quantitative trait locus(QTL)mapping identified one major QTL(QFhb.hwwg-2DS)on chromosome arm 2DS for the percentage of symptomatic spikelets(PSS)in the spike,deoxynivalenol(DON)content and Fusarium damaged kernel(FDK).This QTL explained up to 71.8%of the phenotypic variation for the three FHB-related traits and overlapped with the major QTL for HT,HD,SL,KNS,SNS,TGW,and grain size.QTL on chromosome arms 2AL,2DS,3AL and 4BS were significant for the spike and grain traits measured.G97252W contributed FHB resistance and high SNS alleles at QFhb.hwwg-2DS,high KNS alleles at the QTL on 2AL and 2DS,and high TGW and grain size alleles at QTL on 3AL;whereas G97380A contributed high TGW and grain size alleles at the QTL on 2AL and 2DS,respectively,and the high KNS allele at the 4BS QTL.Combining QFhb.hwwg-2DS with positive alleles for spike and grain traits from other chromosomes may simultaneously improve FHB resistance and grain yield in new cultivars.
基金the National Research Initiative Competitive Grant(2017-67007-25939)from the U.S.Department of Agriculture,National Institute of Food and Agriculture。
文摘The Hessian fly(HF,Mayetiola destructor)is one of the destructive pests of wheat(Triticum aestivum L.)worldwide.Resistant cultivars can effectively minimize wheat damage due to this insect pest.To identify new quantitative trait loci(QTL)for HF resistance,a population of recombinant inbred lines(RILs)was developed from a cross between the HF-resistant wheat cultivar‘Chokwang’and susceptible wheat‘Ning 7840’,and phenotyped for responses to HF attack.A linkage map was constructed using 1147 single nucleotide polymorphism(SNP)markers generated from genotyping-by-sequencing(GBS).One major QTL,QHf.hwwg-6 BS,for HF-resistance was identified on chromosome arm 6 BS,which explained up to84.0%of the phenotypic variation and was contributed by Chokwang.Two RILs showed recombination in the candidate interval of QHf.hwwg-6 BS,which delimited QHf.hwwg-6 BS to a 4.75 Mb physical interval between 6,028,601 bp and 10,779,424 bp on chromosome arm 6 BS of IWGSC Chinese Spring reference genome Ref Seq v2.0.Seven GBS-SNPs in the candidate interval were converted into Kompetitive allele specific polymerase chain reaction(KASP)markers.Two of them,KASP-6 B112698 and KASP-6 B7901215,were validated in a U.S.winter wheat panel.KASP-6 B112698 was nearly diagnostic,thus can be used to screen QHf.hwwg-6 BS and pyramid it with other resistance genes in breeding programs.
基金This work was supported by two grants from the National Nature Science Foundation of China(31371607 and 31071412)a grant from Hi-Tech Research and Development Program of China(2012AA101105).
文摘With the increase in consumer demand,wheat grain quality improvement has become a focus in China and worldwide.Transcriptome analysis is a powerful approach to research grain traits and elucidate their genetic regulation.In this study,two cDNA libraries from the developing grain and leaf-stem components of bread wheat cultivar,Nongda211,were sequenced using Roche/454 technology.There were 1061274 and 1516564 clean reads generated from grain and leaf-stem,respectively.A total of 61393 high-quality unigenes were obtained with an average length of 1456 bp after de novo assembly.The analysis of the 61393 unigenes involved in the biological processes of the grain showed that there were 7355 differentially expressed genes upregulated in the grain library.Gene ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that many transcription products and transcription factors associated with carbohydrate and protein metabolism were abundantly expressed in the grain.These results contribute to excavate genes associated with wheat quality and further study how they interact.