Solar,terrestrial,and supernova neutrino experiments are subject to muon-induced radioactive background.The China Jinping Underground Laboratory(CJPL),with its unique advantage of a 2400 m rock coverage and long dista...Solar,terrestrial,and supernova neutrino experiments are subject to muon-induced radioactive background.The China Jinping Underground Laboratory(CJPL),with its unique advantage of a 2400 m rock coverage and long distance from nuclear power plants,is ideal for MeV-scale neutrino experiments.Using a 1-ton prototype detector of the Jinping Neutrino Experiment(JNE),we detected 3 43 high-energy cosmic-ray muons and(7.86±3.97)muon-induced neutrons from an 820.28-day dataset at the first phase of CJPL(CJPL-I).Based on the muon-induced neutrons,we measured the corresponding muon-induced neutron yield in a liquid scintillator to be(3.44±1.86_(stat.)±0.76_(syst.))×10^(-4) μ^(-1)g^(-1)cm^(2) at an average muon energy of 340 GeV.We provided the first study for such neutron background at CJPL.A global fit including this measurement shows a power-law coefficient of(0.75±0.02) for the dependence of the neutron yield at the liquid scintillator on muon energy.展开更多
基金Supported in part by the National Natural Science Foundation of China (11620101004,11475093,12127808)the Key Laboratory of Particle&Radiation Imaging(Tsinghua University)+2 种基金the CAS Center for Excellence in Particle Physics (CCEPP)Guangdong Basic and Applied Basic Research Foundation(2019A1515012216)Portion of this work performed at Brookhaven National Laboratory is supported in part by the United States Department of Energy (DESC0012704)。
文摘Solar,terrestrial,and supernova neutrino experiments are subject to muon-induced radioactive background.The China Jinping Underground Laboratory(CJPL),with its unique advantage of a 2400 m rock coverage and long distance from nuclear power plants,is ideal for MeV-scale neutrino experiments.Using a 1-ton prototype detector of the Jinping Neutrino Experiment(JNE),we detected 3 43 high-energy cosmic-ray muons and(7.86±3.97)muon-induced neutrons from an 820.28-day dataset at the first phase of CJPL(CJPL-I).Based on the muon-induced neutrons,we measured the corresponding muon-induced neutron yield in a liquid scintillator to be(3.44±1.86_(stat.)±0.76_(syst.))×10^(-4) μ^(-1)g^(-1)cm^(2) at an average muon energy of 340 GeV.We provided the first study for such neutron background at CJPL.A global fit including this measurement shows a power-law coefficient of(0.75±0.02) for the dependence of the neutron yield at the liquid scintillator on muon energy.