期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adding body load modifies the vibratory sensation of the foot sole and affects the postural control 被引量:1
1
作者 yves jammes Eva Ferrand +2 位作者 Corentin Fraud Alain Boussuges Jean Paul Weber 《Military Medical Research》 SCIE CAS CSCD 2019年第1期60-66,共7页
Background: Heavy backpacks are often used by soldiers and firefighters. Weight carrying could reduce the speed and efficiency in task completion by altering the foot sole sensitivity and postural control.Methods: In ... Background: Heavy backpacks are often used by soldiers and firefighters. Weight carrying could reduce the speed and efficiency in task completion by altering the foot sole sensitivity and postural control.Methods: In fifteen healthy subjects, we measured the changes in sensitivity to vibrations applied to the foot sole when standing upright or walking after load carrying(30% body weight). The participants were asked to judge different vibration amplitudes applied on the 2 nd or 5 th metatarsal head and the heel at two frequencies(25 and 150 Hz) to determine the vibration threshold and the global perceptual representation(Ψ)of the vibration amplitude(Φ)given by the Stevens power function(Ψ=k×Φ~n). Any increase in negative k value indicated a reduction in sensitivity to the lowest loads. Pedobarographic measurements, with computation of the center of pressure(COP) and its deviations, were performed during weight carrying.Results: The 25-Hz vibration threshold significantly increased after weight carrying when standing upright or walking.After standing with the added loads, the absolute negative k value increased for the 25 Hz frequency. After walking with the added loads, the k coefficient increased for the two vibration frequencies. Weight carrying significantly increased both the CoP surface and CoP lateral deviation.Conclusions: Our data show that weight carrying reduces the sensory pathways from the foot sole and accentuates the center of pressure deviations. 展开更多
关键词 FOOT SOLE sensitivity Vibration WEIGHT carrying POSTURAL control
下载PDF
Chronic fatigue syndrome with history of severe infection combined altered blood oxidant status, and reduced potassium efflux and muscle excitability at exercise 被引量:1
2
作者 yves jammes Jean Guillaume Steinberg +1 位作者 Regis Guieu Stephane Delliaux 《Open Journal of Internal Medicine》 2013年第3期98-105,共8页
It is documented that chronic fatigue syndrome (CFS) combines enhanced oxidative stress with altered muscle excitability. We hypothesized that these disorders may be accentuated when severe infection preceded the CFS ... It is documented that chronic fatigue syndrome (CFS) combines enhanced oxidative stress with altered muscle excitability. We hypothesized that these disorders may be accentuated when severe infection preceded the CFS symptoms. This case-control study compared 55 CFS patients to a matched control group of 40 healthy subjects. In twenty-five CFS patients, severe infection was reported within the three to seven?month period preceding the CFS symptoms. The others had practiced sport at high level. Plasma concentrations of potassium, a marker of lipid peroxidation (thiobarbituric acid reactive substances, TBARS), and an endogenous antioxidant (reduced ascorbic acid, RAA) were measured. Action potential (M-wave) was evoked in the vastus lateralis muscle to explore the muscle membrane excitability. All subjects performed a maximal incremental cycling exercise. Compared to control subjects, all CFS patients presented an elevated resting TBARS level and, during and after exercise, an altered M-wave configuration. History of infection was associated with marked significant increase in resting TBARS level, enhanced M-wave alterations, and also reduced exercise-induced potassium efflux. The magnitude of exercise-induced M-wave alterations was proportional to the baseline TBARS level. Severe infection preceding CFS seems to constitute a stressor inducing altered blood oxidant status and a reduced muscle excitability at work. 展开更多
关键词 Chronic Fatigue Syndrome INFECTIOUS Diseases MUSCLE EXCITABILITY OXIDATIVE Stress
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部