A glasshouse experiment using a rhizobox technique was conducted to examine salt dynamics in the rhizosphere of a salt-tolerant grass, Puccinellia ciliata Bor. ’Irwin Hunter’, grown in a loamy soil, and to study the...A glasshouse experiment using a rhizobox technique was conducted to examine salt dynamics in the rhizosphere of a salt-tolerant grass, Puccinellia ciliata Bor. ’Irwin Hunter’, grown in a loamy soil, and to study the effect of rainfall flush on salt accumulation in the rhizosphere. The rhizobox (10 × 5.5 × 50 cm) had a nylon mesh (1 μm) positioned vertically in the middle to create two compartments filled with soil amended with 1 g NaCl kg-1. The plants were grown in one compartment only. Flushed treatments received 275 mL of deionized water two days before harvest. In the plant-growing compartment, soils were sectioned vertically at 5 cm intervals. Significant differences in soil electrical conductivity (EC) (P < 0.05) and pH (P < 0.05) were observed for depths, but not between flushed and non-flushed treatments. In the no-plant compartment (rhizosphere), soil cores were taken horizontally at depths of 5, 20 and 40 cm and sliced at 1, 2, 3, 4, 5, 7, 10, 15 and 20 mm away from the roots. Soil EC and Cl- concentration at the 5 and 20 cm depths, and Na+ concentration at the 5 cm depth significantly decreased (P < 0.05) with the distance away from the root, but no significant differences were observed in soil pH and concentrations of the K+ and Ca2+. The flush treatment only had significant influence on soil EC, pH, and Cl- concentration at the 20 cm depth. Thus, salt accumulation could occur in the rhizosphere of salt-tolerant species on saline soils, and the periodic low rainfall might not have a strong influence on salt distribution in the rhizosphere and/or root zone.展开更多
Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N...Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N2 and N5,were subjected to six cadmium(Cd) concentrations(0,5,25,50,100 and 200 mg L1) to investigate Cd tolerance and accumulation.After 21 days of growth,the effects of Cd on growth,chlorophyll content,net photosynthetic rate,intercellular CO2 concentration and malondialdehyde content were evaluated.Most growth parameters were reduced under Cd stress.The two Jerusalem artichoke cultivars had relatively high Cd tolerance and accumulation capacity(> 100 mg kg1),with N5 being more tolerant and having higher Cd accumulation than N2.Roots accumulated more Cd than stems and leaves.The bioconcentration factors(far higher than 1) and translocation factors(lower than 1) decreased with an increase in Cd applied.The results suggested that Jerusalem artichoke could be grown at relatively high Cd loads,and N5 could be an excellent candidate for phytoremediation of Cd-contaminated soils.展开更多
文摘A glasshouse experiment using a rhizobox technique was conducted to examine salt dynamics in the rhizosphere of a salt-tolerant grass, Puccinellia ciliata Bor. ’Irwin Hunter’, grown in a loamy soil, and to study the effect of rainfall flush on salt accumulation in the rhizosphere. The rhizobox (10 × 5.5 × 50 cm) had a nylon mesh (1 μm) positioned vertically in the middle to create two compartments filled with soil amended with 1 g NaCl kg-1. The plants were grown in one compartment only. Flushed treatments received 275 mL of deionized water two days before harvest. In the plant-growing compartment, soils were sectioned vertically at 5 cm intervals. Significant differences in soil electrical conductivity (EC) (P < 0.05) and pH (P < 0.05) were observed for depths, but not between flushed and non-flushed treatments. In the no-plant compartment (rhizosphere), soil cores were taken horizontally at depths of 5, 20 and 40 cm and sliced at 1, 2, 3, 4, 5, 7, 10, 15 and 20 mm away from the roots. Soil EC and Cl- concentration at the 5 and 20 cm depths, and Na+ concentration at the 5 cm depth significantly decreased (P < 0.05) with the distance away from the root, but no significant differences were observed in soil pH and concentrations of the K+ and Ca2+. The flush treatment only had significant influence on soil EC, pH, and Cl- concentration at the 20 cm depth. Thus, salt accumulation could occur in the rhizosphere of salt-tolerant species on saline soils, and the periodic low rainfall might not have a strong influence on salt distribution in the rhizosphere and/or root zone.
基金Supported by the Program of Introducing International Advanced Agricultural Science and Technologies(948 Program) of Ministry of Agriculture of China(No.2009-Z9)the National Key Technology R&D Program of China(Nos.2009BADA3B048 and 2011BAD13B09)+3 种基金the Jiangsu Provincial Key Technology R&D Program of China(No.BE2010305)the Ph.D.Programs Foundation of Ministry of Education of China(No.20100097120016)the Special Fund for Public Welfare Technology Research of Agricultural Industry(No.200903001-5)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N2 and N5,were subjected to six cadmium(Cd) concentrations(0,5,25,50,100 and 200 mg L1) to investigate Cd tolerance and accumulation.After 21 days of growth,the effects of Cd on growth,chlorophyll content,net photosynthetic rate,intercellular CO2 concentration and malondialdehyde content were evaluated.Most growth parameters were reduced under Cd stress.The two Jerusalem artichoke cultivars had relatively high Cd tolerance and accumulation capacity(> 100 mg kg1),with N5 being more tolerant and having higher Cd accumulation than N2.Roots accumulated more Cd than stems and leaves.The bioconcentration factors(far higher than 1) and translocation factors(lower than 1) decreased with an increase in Cd applied.The results suggested that Jerusalem artichoke could be grown at relatively high Cd loads,and N5 could be an excellent candidate for phytoremediation of Cd-contaminated soils.