A new mesoporous carbon-tin (MC-Sn) nanocomposite has been successfully prepared via a two-step method. From the transmission electron microscopy (TEM) observations, the tin nanoparticles were decorated on the as-...A new mesoporous carbon-tin (MC-Sn) nanocomposite has been successfully prepared via a two-step method. From the transmission electron microscopy (TEM) observations, the tin nanoparticles were decorated on the as-prepared mesoporous carbons. The mesoprous structure of the carbon can effectively buffer the volume changes during the Li-Sn alloying and de-alloying cycles. The as-prepared MC/Sn nanocomposite electrodes exhibited extremely good cycling stability, with the specific capacity of Sn in the composite electrode calculated to be 959.7 mAh-g-1, which amounts to an impressive 90.9% of the theoretical value (990 mAh-g-1). The reversible capacity after 200 cycles is 96.1% of the first cycle reversible capacity, i.e., the capacity fade rate is only 0.0195% per cycle, which is even better than that of commercial graphite-based anodes.展开更多
基金the Australian Research Council(ARC)through ARC Centre of Excellence funding(CE0561616).
文摘A new mesoporous carbon-tin (MC-Sn) nanocomposite has been successfully prepared via a two-step method. From the transmission electron microscopy (TEM) observations, the tin nanoparticles were decorated on the as-prepared mesoporous carbons. The mesoprous structure of the carbon can effectively buffer the volume changes during the Li-Sn alloying and de-alloying cycles. The as-prepared MC/Sn nanocomposite electrodes exhibited extremely good cycling stability, with the specific capacity of Sn in the composite electrode calculated to be 959.7 mAh-g-1, which amounts to an impressive 90.9% of the theoretical value (990 mAh-g-1). The reversible capacity after 200 cycles is 96.1% of the first cycle reversible capacity, i.e., the capacity fade rate is only 0.0195% per cycle, which is even better than that of commercial graphite-based anodes.