期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Low-Temperature Nitriding by Means of SMAT 被引量:3
1
作者 W.P.Tong H.W.Zhang +3 位作者 N.R.Tao z.b.wang J.Lu K.Lu 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期301-306,共6页
The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation ... The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation to the surface layer. The subsequent nitriding kinetics of the as-treated samples with the nanostructured surface layer is greatly enhanced so that the nitriding temperatures can be reduce to 300 - 400 °C regions. This enhanced processing method demonstrates both the technological significance of nanomaterials in advancing the traditional processing techniques, and provides a new approach for selective surface reactions in solids. This article reviews the present state of the art in this field. The microstructure and properties of SMAT samples nitrided will be summarized. Further considerations of the development and applications of this new technique will also be presented. 展开更多
关键词 低温渗氮 SMAT 纳米结晶 表面机械损耗
下载PDF
含沙量对冲积河流河型的影响 被引量:1
2
作者 D.S.van Maren J.C.Winterwerp +4 位作者 H.J.de Vriend z.b.wang Z-Y Wang J.J.Zhou B.S.Wu 《人民黄河》 CAS 北大核心 2005年第11期76-76,共1页
黄河下游泥沙输送的机理随含沙量的变化很大。黄河下游的河道一般呈游荡型或弯曲型,显著特点是在低含沙量和高含沙量条件下都存在着强烈的河道侵蚀及游荡型河道形态,而淤积和游荡则多发生于中等含沙量条件下。一维数值模型揭示了某些... 黄河下游泥沙输送的机理随含沙量的变化很大。黄河下游的河道一般呈游荡型或弯曲型,显著特点是在低含沙量和高含沙量条件下都存在着强烈的河道侵蚀及游荡型河道形态,而淤积和游荡则多发生于中等含沙量条件下。一维数值模型揭示了某些河床形态可能与泥沙密度的垂向层状分布及其阻碍沉降效果有密切关系。泥沙含量不大的情况下水流是次饱和的,流速呈对数曲线分布,泥沙容重呈层状分布,次饱和水流造成河床冲刷和弯曲型河道;高含沙水流情况下,水流的紊动结构造成的含沙量纵剖面变化,形成超饱和水流;在更高含沙量(10—100kg/m^3)情况下,悬移质泥沙可造成垂向几乎为常数的宙沙量纵剖面及对数流速分布。这些可以由泥沙引起容重效应的IDV模型进行验证,而河道形态变化可由3D模型模拟。河流形态模拟揭示了在相对低含沙水流中形成游荡型河道,主要是由于河道淤积、壅水、分汊形成新流路造成。当存在高含沙水流时,河床受到冲刷,水位降低,大堤约束河道,从而减小了游荡强度。另外,落淤速度的降低造成河道淤积减弱,形成冲刷,结果高含沙水流却形成了弯曲型河道。 展开更多
关键词 冲积河流 含沙量 高含沙水流 河道形态 泥沙输送 河型 河床冲刷 河道淤积 黄河下游 河床形态
下载PDF
An Aluminide Surface Layer Containing Lower-Al on Ferritic-Martensitic Steel Formed by Lower-Temperature Aluminization 被引量:7
3
作者 S.Guo z.b.wang K.Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第12期1268-1273,共6页
An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization proce... An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization process at lower temperatures,i.e.a packed aluminization followed by a diffusion annealing treatment below its tempering temperature.Indentation tests indicated that the lower-Al surface layer formed on the SMAT sample is more resistant to cracking and has better adhesion to the substrate in comparison with the Al 5Fe 2 layer formed on the as-received sample after the duplex aluminization process.Isothermal steam oxidation measurements showed that the oxidation resistance is increased significantly by the lower-Al surface layer due to the formation of a protective(Fe,Cr)Al 2O 4 layer.The rate constant of oxidation was estimated to decrease from-0.849 mg^2 cm^-4h^-1 of the as-received material to^0.011 mg^2 cm^-4 h^-1 of the AlFe layer at 700 ℃. 展开更多
关键词 Surface mechanical attrition treatment (SMAT) Ferritic-martensitic steel Lower-temperature aluminization Aluminide Steam oxidation
原文传递
Correlation between depassivation and repassivation processes determined by single particle impingement:Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion 被引量:5
4
作者 L.L.Li z.b.wang +1 位作者 S.Y.He Y.G.Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第30期158-166,共9页
The correlation between depassivation and repassivation processes,which is significant in erosioncorrosion,was quantitatively investigated by single particle impingement tests at various flow velocities and impact ang... The correlation between depassivation and repassivation processes,which is significant in erosioncorrosion,was quantitatively investigated by single particle impingement tests at various flow velocities and impact angles.The results show that both repassivation and depassivation processes are associated with the kinetic energy of solid particle,and demonstrate that the repassivation is retarded by depassivation.This phenomenon probably results from the depassivation-induced microstructure evolution.On this basis,the dependence of critical flow velocity(CFV)for erosion-corrosion on the solid particle concentration and diameter is further theoretically predicted and experimentally verified.Accordingly,the crucial role of depassivation-repassivation in CFV phenomenon is further highlighted. 展开更多
关键词 EROSION-CORROSION Stainless steel Depassivation-repassivation Single particle impact Passive film
原文传递
Diffusion behavior of Cr in gradient nanolaminated surface layer on an interstitial-free steel 被引量:3
5
作者 S.L.Xie z.b.wang K.Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期460-464,共5页
Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-fr... Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-free steel by means of surface mechanical rolling treatment. Microstructural observations demonstrated that the average lamellar thickness is about 80 nm in the topmost surface layer and increases with increasing depth. High thermal stability was confirmed in the GNL surface layer after annealing at 500℃. Diffusion measurements showed that effective diffusivity of Cr in GNL layer is 4–6 orders of magnitude higher than lattice diffusivity within the temperature range from 400 to 500℃. This might be attributed to numerous LAGBs or dislocation structures with a higher energy state in the GNL surface layer. This work demonstrates the possibility to advanced chromizing(or other surface alloying)processes of steels with formation of GNL surface layer, so that a thicker alloyed surface layer with a stable nanostructure is achieved. 展开更多
关键词 GRADIENT nanolaminated structure Interstitial-free steel DIFFUSION LOW-ANGLE GRAIN boundary Surface mechanical ROLLING treatment
原文传递
Strain-induced formation of a gradient nanostructured surface layer on an ultrahigh strength bearing steel 被引量:2
6
作者 K.Zhang z.b.wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第9期1676-1684,共9页
In the present work, an ultrahigh strength bearing steel(AISI 52100) was subjected to surface mechanical rolling treatment(SMRT) at room temperature. Microstructural observations showed that martensitic laths, twi... In the present work, an ultrahigh strength bearing steel(AISI 52100) was subjected to surface mechanical rolling treatment(SMRT) at room temperature. Microstructural observations showed that martensitic laths, twins and cementite particles in the initial microstructure underwent distinct plastic strains and were gradually refined into nanostructures. Consequently, a gradient nanostructured(GNS) surface layer with a mean grain size of -24 nm at the top surface was obtained on the bearing steel, resulting in an increment of -20% in the surface hardness. Analyses based on microstructural evolution, phase constitution and in-depth hardness distribution revealed a mechanically induced formation mechanism of the GNS surface layer. The multiple surface severe plastic deformation under fine lubrication and cooling during SMRT contributed to the formation of a thick hardened surface layer on the bearing steel. 展开更多
关键词 Gradient nanostructured Ultrahigh strength bearing steel Plastic deformation MARTENSITE Surface mechanical rolling treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部