Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 ...Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm^(-2), an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.展开更多
The three-dimensional (3D) structure of the wild-type rabbit hemorrhagic disease virus (RHDV) has been determined to a resolution of 3.2 nm by electron cryo-microscopy and computer image reconstruction techniques. The...The three-dimensional (3D) structure of the wild-type rabbit hemorrhagic disease virus (RHDV) has been determined to a resolution of 3.2 nm by electron cryo-microscopy and computer image reconstruction techniques. The 3D density map exhibits characteristic structural features of a calicivirus: a T=3 icosahedral capsid with 90 arch-like capsomeres at the icosahedral and local 2-fold axes and 32 large surface hollows at the icosahedral 5- and 3-fold axes. This result confirms that the RHDV isolated in China is a member of the Caliciviridae family. A rather continuous capsid shell was found without channels. However, our RHDV structure also reveals some distinct structural char-acteristics not observed in other caliciviruses, including interconnected capsomeres and the lack of protuberance on the base of each of the surface hollows. Two types of particles were identified with similar outer capsid structure but different density distributions inside the capsid shells, which could not be distinguished by展开更多
Rice dwarf virus (RDV) is a double-shelled icosahedral virus. Using electron cryomicro-scopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner...Rice dwarf virus (RDV) is a double-shelled icosahedral virus. Using electron cryomicro-scopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner shell capsid without the outer shell and viral RNA. The results show that the inner shell is a thin, densely packed, smooth structure, which provides a scaffold for the full virus. A total of 120 copies of the major inner shell capsid protein P3 forms 60 dimers arranged in a T=1 icosahedral lattice. A close examination on the subunit packing of the T=1 inner core P3 with that of the T=13/ outer shell P8 indicated that P8 trimers connect with P3 through completely non-equivalent, yet highly specific, intermolecular interactions.展开更多
基金supported by National Natural Science Foundation of China(No.5073000830772434)+2 种基金National Basic Research Program of China(No.2006CB3004006)Shanghai Science and Technology Research Foundation(No:09JC1400740001052nm05500)
文摘Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm^(-2), an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 69501008 and 19634020) Research in Houston has been supported by NIH (AI 46420) and the Welch Foundation (AU-1492).
文摘The three-dimensional (3D) structure of the wild-type rabbit hemorrhagic disease virus (RHDV) has been determined to a resolution of 3.2 nm by electron cryo-microscopy and computer image reconstruction techniques. The 3D density map exhibits characteristic structural features of a calicivirus: a T=3 icosahedral capsid with 90 arch-like capsomeres at the icosahedral and local 2-fold axes and 32 large surface hollows at the icosahedral 5- and 3-fold axes. This result confirms that the RHDV isolated in China is a member of the Caliciviridae family. A rather continuous capsid shell was found without channels. However, our RHDV structure also reveals some distinct structural char-acteristics not observed in other caliciviruses, including interconnected capsomeres and the lack of protuberance on the base of each of the surface hollows. Two types of particles were identified with similar outer capsid structure but different density distributions inside the capsid shells, which could not be distinguished by
基金theNational Natural Science Foundation of China (Grant No. 39870181), NIH (USA, AI 46420 to ZHZ) and the Welch Foundation (AU-1492 to ZHZ).
文摘Rice dwarf virus (RDV) is a double-shelled icosahedral virus. Using electron cryomicro-scopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner shell capsid without the outer shell and viral RNA. The results show that the inner shell is a thin, densely packed, smooth structure, which provides a scaffold for the full virus. A total of 120 copies of the major inner shell capsid protein P3 forms 60 dimers arranged in a T=1 icosahedral lattice. A close examination on the subunit packing of the T=1 inner core P3 with that of the T=13/ outer shell P8 indicated that P8 trimers connect with P3 through completely non-equivalent, yet highly specific, intermolecular interactions.