Results presented in this paper contribute to investigation of the granulation mechanisms of γ+(Fe,Mn)3C eutectics in the austenite matrix composites (abbreviated EAMC). The specimens corresponding to the nominal com...Results presented in this paper contribute to investigation of the granulation mechanisms of γ+(Fe,Mn)3C eutectics in the austenite matrix composites (abbreviated EAMC). The specimens corresponding to the nominal composition of eutectic with controlled RE(Ce)-Mg agent modifier additions have been unidirectional solidified with a constant growth rate of 2.18μm/s at a fixed temperature gradient of 800K/cm using vertical Bridgeman method. With the RE-Mg agent modifier, the transition of solid/liquid (S/L) interface from columnar to dendrite (CDT), refinement and developed branching of γ and (Fe,Mn)3C phases in the eutectics, and the transition of growth style from faceted-nonfaceted (F/NF) to nonfaceted-nonfaceted (NF/NF) for γ and (Fe,Mn)3C phases in the eutectic have been observed and investigated theoretically. Those can explain the granulation of γ+(Fe,Mn)3C eutectics in the as cast because the roundness increases with the developed lateral branching of primary austenite dendrites, refinement of eutectics, and NF/NF growth of γ and (Fe,Mn)3C phases in the eutectic.展开更多
Results presented in this paper contribute to investigation of the effect of the added Ca-Si modifier amount ( ) on the microstructure scales of granular γ-(Fe,Mn)3C eutectics such as the volume fraction (f) and di...Results presented in this paper contribute to investigation of the effect of the added Ca-Si modifier amount ( ) on the microstructure scales of granular γ-(Fe,Mn)3C eutectics such as the volume fraction (f) and diameter (d) in the austenite steel matrix composites (EAMC). Directional solidification of EAMC has been carried out using vertical Bridgman method at 50.6μms-1 with a constant temperature gradient about 800Kcm-1. The higher constitutional supercooling ahead of solid-liquid interface attributing to the larger results in the enlargement of γ-(Fe,Mn)3C coupled-zone and the increment of the nucleation rate of eutectics. Therefore, f increases with increasing . The branches of the primary austenite dendrites develop more greatly as increases, which limits the growth of eutectics. As a result, d decreases with increasing .展开更多
Electromagnetic separation of non-metallic inclusions from Al-Si melt is studied by theoretical analysis and experiments on self-designed electromagnetic separation apparatus. Metallographs and LECO Image Analysis Sy...Electromagnetic separation of non-metallic inclusions from Al-Si melt is studied by theoretical analysis and experiments on self-designed electromagnetic separation apparatus. Metallographs and LECO Image Analysis System were used to analyze the content of alumina in aluminum alloy before and after electromagnetic separation. It is seen that removal effciency increases with the increase of electromagnetic force (EMF) and diameter of inclusion particles while decreases with the increase of melt velocity and height of separator. All alumina particles with diamete of 14μm have been removed successfully from the melt.展开更多
基金supported by the National Natural Science Foundation of China(No.50001008).
文摘Results presented in this paper contribute to investigation of the granulation mechanisms of γ+(Fe,Mn)3C eutectics in the austenite matrix composites (abbreviated EAMC). The specimens corresponding to the nominal composition of eutectic with controlled RE(Ce)-Mg agent modifier additions have been unidirectional solidified with a constant growth rate of 2.18μm/s at a fixed temperature gradient of 800K/cm using vertical Bridgeman method. With the RE-Mg agent modifier, the transition of solid/liquid (S/L) interface from columnar to dendrite (CDT), refinement and developed branching of γ and (Fe,Mn)3C phases in the eutectics, and the transition of growth style from faceted-nonfaceted (F/NF) to nonfaceted-nonfaceted (NF/NF) for γ and (Fe,Mn)3C phases in the eutectic have been observed and investigated theoretically. Those can explain the granulation of γ+(Fe,Mn)3C eutectics in the as cast because the roundness increases with the developed lateral branching of primary austenite dendrites, refinement of eutectics, and NF/NF growth of γ and (Fe,Mn)3C phases in the eutectic.
基金supported by the National Natural Science Foundations of China(Grant No.50001008 and No.50271042).
文摘Results presented in this paper contribute to investigation of the effect of the added Ca-Si modifier amount ( ) on the microstructure scales of granular γ-(Fe,Mn)3C eutectics such as the volume fraction (f) and diameter (d) in the austenite steel matrix composites (EAMC). Directional solidification of EAMC has been carried out using vertical Bridgman method at 50.6μms-1 with a constant temperature gradient about 800Kcm-1. The higher constitutional supercooling ahead of solid-liquid interface attributing to the larger results in the enlargement of γ-(Fe,Mn)3C coupled-zone and the increment of the nucleation rate of eutectics. Therefore, f increases with increasing . The branches of the primary austenite dendrites develop more greatly as increases, which limits the growth of eutectics. As a result, d decreases with increasing .
基金This work supported by the National Natural Science Foundation of China(Grant,No.59871029)the National Key Fundamental Research Project(973)(No.G1999064900)
文摘Electromagnetic separation of non-metallic inclusions from Al-Si melt is studied by theoretical analysis and experiments on self-designed electromagnetic separation apparatus. Metallographs and LECO Image Analysis System were used to analyze the content of alumina in aluminum alloy before and after electromagnetic separation. It is seen that removal effciency increases with the increase of electromagnetic force (EMF) and diameter of inclusion particles while decreases with the increase of melt velocity and height of separator. All alumina particles with diamete of 14μm have been removed successfully from the melt.