We propose and demonstrate the use of random phase plates(RPPs)for high-energy sub-picosecond lasers.Contrarily to previous work related to nanosecond lasers,an RPP poses technical challenges with ultrashort-pulse las...We propose and demonstrate the use of random phase plates(RPPs)for high-energy sub-picosecond lasers.Contrarily to previous work related to nanosecond lasers,an RPP poses technical challenges with ultrashort-pulse lasers.Here,we implement the RPP near the beginning of the amplifier and image-relay it throughout the laser amplifier.With this,we obtain a uniform intensity distribution in the focus over an area 1600 times the diffraction limit.This method shows no significant drawbacks for the laser and it has been implemented at the PHELIX laser facility where it is now available for users.展开更多
基金European Union’s Horizon 2020 research and innovation program under grant agreement number 633053。
文摘We propose and demonstrate the use of random phase plates(RPPs)for high-energy sub-picosecond lasers.Contrarily to previous work related to nanosecond lasers,an RPP poses technical challenges with ultrashort-pulse lasers.Here,we implement the RPP near the beginning of the amplifier and image-relay it throughout the laser amplifier.With this,we obtain a uniform intensity distribution in the focus over an area 1600 times the diffraction limit.This method shows no significant drawbacks for the laser and it has been implemented at the PHELIX laser facility where it is now available for users.