To probe a pathway to improve the low-cycle fatigue life of face-centered cubic(FCC)metals via grain boundary engineering(GBE),the tension-tension fatigue tests were carried out on the non-GBE and GBE Cu-16 at.%Al all...To probe a pathway to improve the low-cycle fatigue life of face-centered cubic(FCC)metals via grain boundary engineering(GBE),the tension-tension fatigue tests were carried out on the non-GBE and GBE Cu-16 at.%Al alloys at relatively high stress amplitudes.The results indicate that the cyclic strain localiza-tion and cracking at grain boundaries(GBs)can be effectively suppressed,especially at increased stress amplitude,by an appropriate GBE treatment that can result in a higher resistance to GB cracking and a greater capability of compatible deformation.Therefore,the sensitivity of fatigue life to stress amplitude can be weakened by GBE,and the low-cycle fatigue life of Cu-16 at.%Al alloys is thus distinctly improved.展开更多
To examine the influence of grain boundary engineering(GBE)on the work hardening behavior,the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel(ASS)samples with a comparable ...To examine the influence of grain boundary engineering(GBE)on the work hardening behavior,the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel(ASS)samples with a comparable grain size at two strain rates of 10^(-2)s^(-1)and 10^(-4)s^(-1).The evolution of deformation microstructures was revealed by transmission electron microscopy(TEM)and quasi-in situ electron backscatter diffraction(EBSD)observations.The results show that the influence of GBE on the mechanical properties of AL6XN super-ASS is mainly manifested in the change of work hardening behavior.At the early stage of plastic deformation,GBE samples show a slightly lowered work hardening rate,since the special grain boundaries(SBs)of a high fraction induce a higher dislocation free path and a weaker back stress;however,with increasing plastic deformation amount,the work hardening rate of GBE samples gradually surpasses that of non-GBE samples due to the better capacity of maintainable work hardening that is profited from the inhibited dislocation annihilation by SBs.In a word,the enhanced capacity of sustained work hardening effectively postpones the appearance of necking point and thus efficaciously ameliorates the ductility of GBE samples under the premise of little changes in yield strength and ultimate tensile strength.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.51871048 and 52171108)the Fundamental Research Funds for the Central Universities under(No.N2002014).
文摘To probe a pathway to improve the low-cycle fatigue life of face-centered cubic(FCC)metals via grain boundary engineering(GBE),the tension-tension fatigue tests were carried out on the non-GBE and GBE Cu-16 at.%Al alloys at relatively high stress amplitudes.The results indicate that the cyclic strain localiza-tion and cracking at grain boundaries(GBs)can be effectively suppressed,especially at increased stress amplitude,by an appropriate GBE treatment that can result in a higher resistance to GB cracking and a greater capability of compatible deformation.Therefore,the sensitivity of fatigue life to stress amplitude can be weakened by GBE,and the low-cycle fatigue life of Cu-16 at.%Al alloys is thus distinctly improved.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.51871048 and 52171108。
文摘To examine the influence of grain boundary engineering(GBE)on the work hardening behavior,the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel(ASS)samples with a comparable grain size at two strain rates of 10^(-2)s^(-1)and 10^(-4)s^(-1).The evolution of deformation microstructures was revealed by transmission electron microscopy(TEM)and quasi-in situ electron backscatter diffraction(EBSD)observations.The results show that the influence of GBE on the mechanical properties of AL6XN super-ASS is mainly manifested in the change of work hardening behavior.At the early stage of plastic deformation,GBE samples show a slightly lowered work hardening rate,since the special grain boundaries(SBs)of a high fraction induce a higher dislocation free path and a weaker back stress;however,with increasing plastic deformation amount,the work hardening rate of GBE samples gradually surpasses that of non-GBE samples due to the better capacity of maintainable work hardening that is profited from the inhibited dislocation annihilation by SBs.In a word,the enhanced capacity of sustained work hardening effectively postpones the appearance of necking point and thus efficaciously ameliorates the ductility of GBE samples under the premise of little changes in yield strength and ultimate tensile strength.