A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and r...A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio(p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°.Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°,75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.展开更多
A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is perf...A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison.The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant,and spatial difference is also discussed.Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest.The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path.Thermal barrier effects of the coating vary at different regions of the blade surface,where higher internal cooling performance exists,more effective the thermal barrier will be,which means the thermal protection effect of coatings is remarkable in these regions.At the designed mass flow ratio condition,the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface,while this value is 0.09 on the suction side.展开更多
An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was...An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was measured by IR camera.The blockage ratio(e/Dh) of the tested channel is 0.078 and the aspect ratio(W/H) is fixed at3.0.Influences of the rib pitch-to-height ratio(P/e) and the rib angle on heat transfer for steam cooling were investigated.In this paper,the Reynolds number(Re) for steam ranges from 3070 to 14800,the rib pitch-to-height ratios were 8,10 and 12,and rib angles were 90°,75°,60°,and 45°.Based on results above,we have concluded that:In case of channels with 90° tranverse ribs,for larger rib pitch models(the rib pitch-to-height ratio=10 and12),areas with low heat transfer coefficient in front of rib is larger and its minimum is lower,while the position of the region with high heat transfer coefficient nearly remains the same,but its maximun of heat transfer coefficient becomes higher.In case of channels with inclined ribs,heat transfer coefficients on the surface decrease along the direction of each rib and show an apparent nonuniformity,consequently the regions with low Nusselt number values closely following each rib expand along the aforementioned direction and that of relative high Nusselt number values vary inversely.For a square channel with 90° ribs at Re= 14800,wider spacing rib configurations(the rib pitch-to-height ratio=10 and 12) give an area-averaged heat transfer on the rib-roughened surface about8.4%and 11.4%more than P/e=8 model,respectively;for inclined parallel ribs with different rib angles at Re=14800,the area-averaged heat transfer coefficients of 75°,60° and 45° ribbed surfaces increase by 20.1%,42.0%and 44.4%in comparison with 90° rib angle model.45° angle rib-roughened channel leads to a maximal augmentation of the area-averaged heat transfer coefficient in all research objects in this paper.展开更多
基金funded by the National Natural Science Foundation of China(Funding No.51206109)
文摘A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio(p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°.Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°,75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.
基金funded by the National Natural Science Foundation of China(Funding No.51206109)
文摘A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison.The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant,and spatial difference is also discussed.Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest.The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path.Thermal barrier effects of the coating vary at different regions of the blade surface,where higher internal cooling performance exists,more effective the thermal barrier will be,which means the thermal protection effect of coatings is remarkable in these regions.At the designed mass flow ratio condition,the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface,while this value is 0.09 on the suction side.
基金funded by the National Natural Science Foundation of China(Funding No.51206109)
文摘An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was measured by IR camera.The blockage ratio(e/Dh) of the tested channel is 0.078 and the aspect ratio(W/H) is fixed at3.0.Influences of the rib pitch-to-height ratio(P/e) and the rib angle on heat transfer for steam cooling were investigated.In this paper,the Reynolds number(Re) for steam ranges from 3070 to 14800,the rib pitch-to-height ratios were 8,10 and 12,and rib angles were 90°,75°,60°,and 45°.Based on results above,we have concluded that:In case of channels with 90° tranverse ribs,for larger rib pitch models(the rib pitch-to-height ratio=10 and12),areas with low heat transfer coefficient in front of rib is larger and its minimum is lower,while the position of the region with high heat transfer coefficient nearly remains the same,but its maximun of heat transfer coefficient becomes higher.In case of channels with inclined ribs,heat transfer coefficients on the surface decrease along the direction of each rib and show an apparent nonuniformity,consequently the regions with low Nusselt number values closely following each rib expand along the aforementioned direction and that of relative high Nusselt number values vary inversely.For a square channel with 90° ribs at Re= 14800,wider spacing rib configurations(the rib pitch-to-height ratio=10 and 12) give an area-averaged heat transfer on the rib-roughened surface about8.4%and 11.4%more than P/e=8 model,respectively;for inclined parallel ribs with different rib angles at Re=14800,the area-averaged heat transfer coefficients of 75°,60° and 45° ribbed surfaces increase by 20.1%,42.0%and 44.4%in comparison with 90° rib angle model.45° angle rib-roughened channel leads to a maximal augmentation of the area-averaged heat transfer coefficient in all research objects in this paper.