Using composite field arithmetic in Galois field can result in the compact Rijndael S-Box. However, the power con- sumption of this solution is too large to be used in resource-limited embedded systems. A full-custom ...Using composite field arithmetic in Galois field can result in the compact Rijndael S-Box. However, the power con- sumption of this solution is too large to be used in resource-limited embedded systems. A full-custom hardware implementation of composite field S-Box is proposed for these targeted domains in this paper. The minimization of power consumption is implemented by optimizing the architecture of the composite field S-Box and using the pass transmission gate (PTG) to realize the logic functions of S-Box. Power simulations were performed using the netlist extracted from the layout. HSPICE simulation results indicated that the proposed S-Box achieves low power consumption of about 130 μW at 10 MHz using 0.25 μm/2.5 V technology, while the consumptions of the positive polarity reed-muller (PPRM) based S-Box and composite field S-Box based on the conventional CMOS logic style are about 240 μW and 420 μW, respectively. The simulations also showed that the presented S-Box obtains better low-voltage operating property, which is clearly relevant for applications like sensor nodes, smart cards and radio frequency identification (RFID) tags.展开更多
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2006AA01Z226)the Scientific Research Foundation of Huazhong University of Science and Technol-ogy (No. 2006Z001B), China
文摘Using composite field arithmetic in Galois field can result in the compact Rijndael S-Box. However, the power con- sumption of this solution is too large to be used in resource-limited embedded systems. A full-custom hardware implementation of composite field S-Box is proposed for these targeted domains in this paper. The minimization of power consumption is implemented by optimizing the architecture of the composite field S-Box and using the pass transmission gate (PTG) to realize the logic functions of S-Box. Power simulations were performed using the netlist extracted from the layout. HSPICE simulation results indicated that the proposed S-Box achieves low power consumption of about 130 μW at 10 MHz using 0.25 μm/2.5 V technology, while the consumptions of the positive polarity reed-muller (PPRM) based S-Box and composite field S-Box based on the conventional CMOS logic style are about 240 μW and 420 μW, respectively. The simulations also showed that the presented S-Box obtains better low-voltage operating property, which is clearly relevant for applications like sensor nodes, smart cards and radio frequency identification (RFID) tags.