期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
从教育数学的角度探讨行列式教学 被引量:5
1
作者 曾振柄 黄勇 饶永生 《高等数学研究》 2020年第4期10-21,43,共13页
本文根据教育数学思想,讨论大学《线性代数》公共课中行列式部分的教学,通过设计几个教学场景,帮助学生以更直观的方法掌握行列式本质.所设计的场景包括:从行列式定义的意图出发合情推理行列式的可能表达式;从低阶行列式性质类比证明行... 本文根据教育数学思想,讨论大学《线性代数》公共课中行列式部分的教学,通过设计几个教学场景,帮助学生以更直观的方法掌握行列式本质.所设计的场景包括:从行列式定义的意图出发合情推理行列式的可能表达式;从低阶行列式性质类比证明行列式定义的必然形式;通过矩阵初等变换与等底单形的体积之间的关系建立行列式与单形体积的关联;通过仿射变换保持单形体积比的性质导出Cramer法则的直观证明;以及分析行列式的不同计算方法所对应的计算复杂度.最后,文章列出行列式知识产生和发展的部分数学史材料,供教师在教学中穿插使用,达到更好引导学生理解和应用行列式知识. 展开更多
关键词 教育数学 行列式 矩阵 体积 CRAMER法则 计算复杂度
下载PDF
半正定多项式的一个降次有理平方和表示算法
2
作者 黄勇 曾振柄 +1 位作者 杨路 饶永生 《系统科学与数学》 CSCD 北大核心 2024年第5期1241-1271,共31页
文章给出一个构造性算法,将一元半正定多项式表示为一些次数递降的多项式的平方和,当输入的多项式的系数是有理数时,该算法构造的降次多项式的系数也是有理数.文章还把这种方法推广到多元多项式情况,即如果该多项式有平方和表示,使用文... 文章给出一个构造性算法,将一元半正定多项式表示为一些次数递降的多项式的平方和,当输入的多项式的系数是有理数时,该算法构造的降次多项式的系数也是有理数.文章还把这种方法推广到多元多项式情况,即如果该多项式有平方和表示,使用文章方法也能得到该半正定多元多项式的一个特殊的平方和分解. 展开更多
关键词 半正定多项式 平方和表示 降次多项式平方和 有理平方和
原文传递
1884-2016年中国香港气候变化特征及其分析
3
作者 曾振柄 魏昙荣 孙翔 《系统科学与数学》 CSCD 北大核心 2023年第6期1536-1554,共19页
根据中国香港天文台1884-2016年之间观测的气候数据资料(其中1940-1946年间有数据缺失),利用Mann-Kendall趋势检验法,滑动t检验,小波变换和交叉小波变换对中国香港气候进行分析.Mann-Kendall趋势分析和滑动t检验结果表明,在前半段即1884... 根据中国香港天文台1884-2016年之间观测的气候数据资料(其中1940-1946年间有数据缺失),利用Mann-Kendall趋势检验法,滑动t检验,小波变换和交叉小波变换对中国香港气候进行分析.Mann-Kendall趋势分析和滑动t检验结果表明,在前半段即1884-1939年期间,中国香港年平均最低与最高气温增长速率基本一致,在后半段,即1947-2016年期间,平均最低气温增长速率显著高于年平均最高气温增长速率.对气温序列进行突变检验时,对1940-1946年缺失数据用邻近的中国澳门地区的数据进行修正后替代,检验表明中国香港气温在1958年发生显著的均值突变,1997年是否是突变点存疑.小波变换得到中国香港气温和降水存在多尺度周期变化,其中气温和降水的第一主周期分别为52a和42a;交叉小波分析显示ENSO特征值Nino3.4、SOI与气温、降水在全时间段上相关性不显著,但存在局部相关性. 展开更多
关键词 气候变化 突变检测 ENSO 小波变换 交叉小波变换
原文传递
弗洛伊登塔尔不可能之谜的机械化算法
4
作者 曾振柄 黄勇 《系统科学与数学》 CSCD 北大核心 2018年第12期1477-1496,共20页
1969年荷兰数学家汉斯·弗洛伊登塔尔提出的"和与积之谜",涉及到整数分拆和因子分解的基本性质,这个表述非常简单的问题表面上看是一个不可能解决的谜题.文章从自动推理智能体的视角,用浅显而严格的语言解释弗洛伊登塔尔... 1969年荷兰数学家汉斯·弗洛伊登塔尔提出的"和与积之谜",涉及到整数分拆和因子分解的基本性质,这个表述非常简单的问题表面上看是一个不可能解决的谜题.文章从自动推理智能体的视角,用浅显而严格的语言解释弗洛伊登塔尔问题的求解过程,可作为计算机搜索程序的设计参照.文章从弗洛伊登塔尔问题延伸定义了弗洛伊登塔尔数(Freudenthal numbers, F数)序列,通过计算机数学实验探讨了F数序列的性质,提出了几个有趣的未解决问题. 展开更多
关键词 和与积之谜 因子分解 整数分拆 智能体 弗洛伊登塔尔数
原文传递
等离子镀膜工艺中的一个转动长方体优化问题
5
作者 曾振柄 鲁健 曾小伟 《系统科学与数学》 CSCD 北大核心 2019年第12期1925-1943,共19页
研究了等离子体镀膜加工衍生的一个工艺问题,即寻找最好的公转、自转速度比例,使得按照该速度比旋转的长方体工件的每个面在镀膜加工过程中接收密度尽可能接近的等离子沉积.通过分析长方体旋转时各点的运动轨迹,将该问题转化为两个含参... 研究了等离子体镀膜加工衍生的一个工艺问题,即寻找最好的公转、自转速度比例,使得按照该速度比旋转的长方体工件的每个面在镀膜加工过程中接收密度尽可能接近的等离子沉积.通过分析长方体旋转时各点的运动轨迹,将该问题转化为两个含参三角函数的积分的计算问题.给出了用Maple软件计算该积分的的程序.通过较多数值计算试验,建立了最佳公转、自转速度比的经验值.文章还讨论多个长方体工件、多面体、凸曲面工件的情形,并给出了一种对静止长方体工件进行烤羊肉串式等离子体镀膜加工的最佳位置. 展开更多
关键词 等离子溅射镀膜 长方体 转动 投影 自动积分
原文传递
GENERATING EXACT NONLINEAR RANKING FUNCTIONS BY SYMBOLIC-NUMERIC HYBRID METHOD 被引量:8
6
作者 SHEN Liyong WU Min +1 位作者 YANG Zhengfeng zeng zhenbing 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2013年第2期291-301,共11页
This paper presents a hybrid symbolic-numeric algorithm to compute ranking functions for establishing the termination of loop programs with polynomial guards and polynomial assignments.The authors first transform the ... This paper presents a hybrid symbolic-numeric algorithm to compute ranking functions for establishing the termination of loop programs with polynomial guards and polynomial assignments.The authors first transform the problem into a parameterized polynomial optimization problem,and obtain a numerical ranking function using polynomial sum-of-squares relaxation via semidefinite programming(SDP).A rational vector recovery algorithm is deployed to recover a rational polynomial from the numerical ranking function,and some symbolic computation techniques are used to certify that this polynomial is an exact ranking function of the loop programs.At last,the authors demonstrate on some polynomial loop programs from the literature that our algorithm successfully yields nonlinear ranking functions with rational coefficients. 展开更多
关键词 Program verification ranking function semidefinite programming symbolic-numeric hybrid method.
原文传递
Resultant Elimination via Implicit Equation Interpolation 被引量:4
7
作者 TANG Min YANG Zhengfeng zeng zhenbing 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第5期1411-1435,共25页
It is well known that resultant elimination is an effective method of solving multivariate polynomial equations. In this paper, instead of computing the target resultants via variable by variable elimination, the auth... It is well known that resultant elimination is an effective method of solving multivariate polynomial equations. In this paper, instead of computing the target resultants via variable by variable elimination, the authors combine multivariate implicit equation interpolation and multivariate resultant elimination to compute the reduced resultants, in which the technique of multivariate implicit equation interpolation is achieved by some high probability algorithms on multivariate polynomial interpolation and univariate rational function interpolation. As an application of resultant elimination, the authors illustrate the proposed algorithm on three well-known unsolved combinatorial geometric optimization problems. The experiments show that the proposed approach of resultant elimination is more efficient than some existing resultant elimination methods on these difficult problems. 展开更多
关键词 ELIMINATION implicit equations INTERPOLATION resultants.
原文传递
Solution to the Generalized Champagne Problem on simultaneous stabilization of linear systems 被引量:4
8
作者 GUAN Qiang WANG Long +3 位作者 XIA BiCan YANG Lu YU WenSheng zeng zhenbing 《Science in China(Series F)》 2007年第5期719-731,共13页
The well-known Generalized Champagne Problem on simultaneous stabilization of linear systems is solved by using complex analysis and Blonders technique. We give a complete answer to the open problem proposed by Patel ... The well-known Generalized Champagne Problem on simultaneous stabilization of linear systems is solved by using complex analysis and Blonders technique. We give a complete answer to the open problem proposed by Patel et al., which automatically includes the solution to the original Champagne Problem. Based on the recent development in automated inequality-type theorem proving, a new stabilizing controller design method is established. Our numerical examples significantly improve the relevant results in the literature. 展开更多
关键词 linear systems STABILIZATION simultaneous stabilization Champagne Problem Generalized Champagne Problem complex analysis inequality-type theorem automated theorem proving
原文传递
Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq 被引量:2
9
作者 LU BingXin zeng zhenbing SHI TieLiu 《Science China(Life Sciences)》 SCIE CAS 2013年第2期143-155,共13页
Transcriptome reconstruction is an important application of RNA-Seq,providing critical information for further analysis of transcriptome.Although RNA-Seq offers the potential to identify the whole picture of transcrip... Transcriptome reconstruction is an important application of RNA-Seq,providing critical information for further analysis of transcriptome.Although RNA-Seq offers the potential to identify the whole picture of transcriptome,it still presents special challenges.To handle these difficulties and reconstruct transcriptome as completely as possible,current computational approaches mainly employ two strategies:de novo assembly and genome-guided assembly.In order to find the similarities and differences between them,we firstly chose five representative assemblers belonging to the two classes respectively,and then investigated and compared their algorithm features in theory and real performances in practice.We found that all the methods can be reduced to graph reduction problems,yet they have different conceptual and practical implementations,thus each assembly method has its specific advantages and disadvantages,performing worse than others in certain aspects while outperforming others in anther aspects at the same time.Finally we merged assemblies of the five assemblers and obtained a much better assembly.Additionally we evaluated an assembler using genome-guided de novo assembly approach,and achieved good performance.Based on these results,we suggest that to obtain a comprehensive set of recovered transcripts,it is better to use a combination of de novo assembly and genome-guided assembly. 展开更多
关键词 transcriptome reconstruction RNA-SEQ de novo assembly genome-guided assembly
原文传递
Heilbronn's Problem of Eight Points in the Square
10
作者 DEHBI Lydia zeng zhenbing 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第6期2452-2480,共29页
In this work the authors consider the problem of optimally distributing 8 points inside a unit square so that the smallest area of the(38)triangles formed by them is maximal.Symbolic computations are employed to reduc... In this work the authors consider the problem of optimally distributing 8 points inside a unit square so that the smallest area of the(38)triangles formed by them is maximal.Symbolic computations are employed to reduce the problem into a nonlinear programming problem and find its optimal solution.All computations are done using Maple. 展开更多
关键词 Global search Heilbronn’s problem optimal configuration smallest triangle’s area symbolic computations
原文传递
Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
11
作者 TANG Min LI Bingyu zeng zhenbing 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第2期552-568,共17页
The problem of computing the greatest common divisor(GCD) of multivariate polynomials, as one of the most important tasks of computer algebra and symbolic computation in more general scope, has been studied extensiv... The problem of computing the greatest common divisor(GCD) of multivariate polynomials, as one of the most important tasks of computer algebra and symbolic computation in more general scope, has been studied extensively since the beginning of the interdisciplinary of mathematics with computer science. For many real applications such as digital image restoration and enhancement,robust control theory of nonlinear systems, L1-norm convex optimization in compressed sensing techniques, as well as algebraic decoding of Reed-Solomon and BCH codes, the concept of sparse GCD plays a core role where only the greatest common divisors with much fewer terms than the original polynomials are of interest due to the nature of problems or data structures. This paper presents two methods via multivariate polynomial interpolation which are based on the variation of Zippel's method and Ben-Or/Tiwari algorithm, respectively. To reduce computational complexity, probabilistic techniques and randomization are employed to deal with univariate GCD computation and univariate polynomial interpolation. The authors demonstrate the practical performance of our algorithms on a significant body of examples. The implemented experiment illustrates that our algorithms are efficient for a quite wide range of input. 展开更多
关键词 Ben-Or/Tiwari algorithm multivariate polynomial interpolation sparse GCD Zippel's algorithm.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部