Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that exis...Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that existing anti-print scanning text image watermarking algorithms cannot take into account the invisibility and robustness of the watermark,an anti-print scanning watermarking algorithm suitable for text images is proposed.This algorithm first performs a series of image enhancement preprocessing operations on the printed scanned image to eliminate the interference of incorrect bit information on watermark embedding and then uses a combination of Discrete Wavelet Transform(DWT)-Singular Value Decomposition(SVD)to embed the watermark.Experiments show that the average Normalized Correlation(NC)of the watermark extracted by this algorithm against attacks such as Joint Photographic Experts Group(JPEG)compression,JPEG2000 compression,and print scanning is above 0.93.Especially,the average NC of the watermark extracted after print scanning attacks is greater than 0.964,and the average Bit Error Ratio(BER)is 5.15%.This indicates that this algorithm has strong resistance to various attacks and print scanning attacks and can better take into account the invisibility of the watermark.展开更多
The trusted sharing of Electronic Health Records(EHRs)can realize the efficient use of medical data resources.Generally speaking,EHRs are widely used in blockchain-based medical data platforms.EHRs are valuable privat...The trusted sharing of Electronic Health Records(EHRs)can realize the efficient use of medical data resources.Generally speaking,EHRs are widely used in blockchain-based medical data platforms.EHRs are valuable private assets of patients,and the ownership belongs to patients.While recent research has shown that patients can freely and effectively delete the EHRs stored in hospitals,it does not address the challenge of record sharing when patients revisit doctors.In order to solve this problem,this paper proposes a deletion and recovery scheme of EHRs based on Medical Certificate Blockchain.This paper uses cross-chain technology to connect the Medical Certificate Blockchain and the Hospital Blockchain to real-ize the recovery of deleted EHRs.At the same time,this paper uses the Medical Certificate Blockchain and the InterPlanetary File System(IPFS)to store Personal Health Records,which are generated by patients visiting different medical institutions.In addition,this paper also combines digital watermarking technology to ensure the authenticity of the restored electronic medical records.Under the combined effect of blockchain technology and digital watermarking,our proposal will not be affected by any other rights throughout the process.System analysis and security analysis illustrate the completeness and feasibility of the scheme.展开更多
Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle wave...Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle waves and particle aggregates exists along bed height.The threshold to identify the occurrence of particle aggregates is suggested based on standard deviation of solid volume fractions in aggregative fluidization.The existence time fractions and frequencies of particle aggregates are predicted along axial direction.The effect of carbon dioxide fluid temperature and pressure on volume fraction and velocity distributions are analyzed at different inlet carbon dioxide velocities and particle densities in high pressure carbon dioxide fluidized beds.Simulated results indicate that the carbon dioxide-particles fluidization transits from particulate to aggregative states with the increase of inlet carbon dioxide ve-locities.The computed fluid volume fractions and heterogeneity indexes are close to the measurements in a high pressure carbon dioxide fluidized bed.展开更多
Adeno-associated virus(AAV)is a promising viral vector and meets most requirements of being a safe biological agent.However,the commercialization of AAV has been hampered due to the limitation of large-scale productio...Adeno-associated virus(AAV)is a promising viral vector and meets most requirements of being a safe biological agent.However,the commercialization of AAV has been hampered due to the limitation of large-scale production,and only a small number of clinical trials have been launched.In recent years,progresses in scalable manufacturing of AAV have dramatically improved AAVbased clinical researches,and have assisted the development of investigational drug products.An AAV1-based investigational product,Glybera,has been formally approved by European Commission for the treatment of lipoprotein lipase deficiency(LPLD).Glybera was the first gene therapy product in the western world,and the production process involves a scalable baculovirus-insect cell system.However,many problems still need to be solved to improve the productivity and quality of AAV.The present review gives critical insights into current state-of-the-art scalable producing methodologies of AAV,such as baculovirus-insect cell system,HSV complementation system,and Ad complementation system,along with a discussion on the problems,solutions,and developmental trends.Novel AAV-producing platforms in Saccharomyces cerevisiae and vaccinia virus complementation system will also be discussed.展开更多
Immunotherapy has become the fourth cancer therapy after surgery, chemotherapy, and radiotherapy. In particular, immune checkpoint inhibitors are proved to be unprecedentedly in increasing the overall survival rates o...Immunotherapy has become the fourth cancer therapy after surgery, chemotherapy, and radiotherapy. In particular, immune checkpoint inhibitors are proved to be unprecedentedly in increasing the overall survival rates of patients with refractory cancers, such as advanced melanoma, non-small cell lung cancer, and renal cell carcinoma. However, inhibitor therapies are only effective in a small proportion of patients with problems, such as side effects and high costs. Therefore, doctors urgently need reliable predictive biomarkers for checkpoint inhibitor therapies to choose the optimal therapies. Here, we review the biomarkers that can serve as potential predictors of the outcomes of immune checkpoint inhibitor treatment, including tumor-specific profiles and tumor microenvironment evaluation and other factors.展开更多
We propose and numerically investigate an efficient transmission-mode metasurface that consists of quasi- continuous trapezoid-shaped crystalline silicon nanoantennas on a quartz substrate. This metasurface provides a...We propose and numerically investigate an efficient transmission-mode metasurface that consists of quasi- continuous trapezoid-shaped crystalline silicon nanoantennas on a quartz substrate. This metasurface provides a linear phase gradient and realizes both full 2Jr phase shift and high transmission efficiency in the operating wavelength range from 740 to 780 nm. At the central wavelength around 751 nm, the total transmission efficiency is up to 88.0% and the section of the desired anomalous refraction is 80.4%. The anomalous refraction angle is 29.62°, and larger refraction angle can be achieved by changing the period of the super cell. We demonstrate a refraction angle as large as 38.59°, and the anomalous transmission efficiency reaches 76.6% at wavelength of 741 nm. It is worth mentioning that the structure is much simpler than conventional metasurfaces based on arrays of discrete nanoantennas. Our research may pave the way for designing efficient all-dielectric phase-gradient metasurfaces and applying them in integrated optical devices for wavefront control.展开更多
基金sponsored by the National Natural Science Foundation of China under Grants 61972207,U1836208,U1836110,61672290,and the Project was through the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institution.
文摘Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that existing anti-print scanning text image watermarking algorithms cannot take into account the invisibility and robustness of the watermark,an anti-print scanning watermarking algorithm suitable for text images is proposed.This algorithm first performs a series of image enhancement preprocessing operations on the printed scanned image to eliminate the interference of incorrect bit information on watermark embedding and then uses a combination of Discrete Wavelet Transform(DWT)-Singular Value Decomposition(SVD)to embed the watermark.Experiments show that the average Normalized Correlation(NC)of the watermark extracted by this algorithm against attacks such as Joint Photographic Experts Group(JPEG)compression,JPEG2000 compression,and print scanning is above 0.93.Especially,the average NC of the watermark extracted after print scanning attacks is greater than 0.964,and the average Bit Error Ratio(BER)is 5.15%.This indicates that this algorithm has strong resistance to various attacks and print scanning attacks and can better take into account the invisibility of the watermark.
基金supported by the National Natural Science Foundation of China under grant 61972207,U1836208,U1836110,61672290the Major Program of the National Social Science Fund of China under Grant No.17ZDA092+2 种基金by the National Key R&D Program of China under grant 2018YFB1003205by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fundby the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘The trusted sharing of Electronic Health Records(EHRs)can realize the efficient use of medical data resources.Generally speaking,EHRs are widely used in blockchain-based medical data platforms.EHRs are valuable private assets of patients,and the ownership belongs to patients.While recent research has shown that patients can freely and effectively delete the EHRs stored in hospitals,it does not address the challenge of record sharing when patients revisit doctors.In order to solve this problem,this paper proposes a deletion and recovery scheme of EHRs based on Medical Certificate Blockchain.This paper uses cross-chain technology to connect the Medical Certificate Blockchain and the Hospital Blockchain to real-ize the recovery of deleted EHRs.At the same time,this paper uses the Medical Certificate Blockchain and the InterPlanetary File System(IPFS)to store Personal Health Records,which are generated by patients visiting different medical institutions.In addition,this paper also combines digital watermarking technology to ensure the authenticity of the restored electronic medical records.Under the combined effect of blockchain technology and digital watermarking,our proposal will not be affected by any other rights throughout the process.System analysis and security analysis illustrate the completeness and feasibility of the scheme.
基金funded by National Natural Science Foundation of China under the Grant No.51776059 and Key R&D Program of China Construction Second Engineering Bureau Co.Ltd.(Grant No.2021ZX180001).
文摘Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle waves and particle aggregates exists along bed height.The threshold to identify the occurrence of particle aggregates is suggested based on standard deviation of solid volume fractions in aggregative fluidization.The existence time fractions and frequencies of particle aggregates are predicted along axial direction.The effect of carbon dioxide fluid temperature and pressure on volume fraction and velocity distributions are analyzed at different inlet carbon dioxide velocities and particle densities in high pressure carbon dioxide fluidized beds.Simulated results indicate that the carbon dioxide-particles fluidization transits from particulate to aggregative states with the increase of inlet carbon dioxide ve-locities.The computed fluid volume fractions and heterogeneity indexes are close to the measurements in a high pressure carbon dioxide fluidized bed.
基金supported by the National Natural Science Foundation of China (81071850 and 81301307)
文摘Adeno-associated virus(AAV)is a promising viral vector and meets most requirements of being a safe biological agent.However,the commercialization of AAV has been hampered due to the limitation of large-scale production,and only a small number of clinical trials have been launched.In recent years,progresses in scalable manufacturing of AAV have dramatically improved AAVbased clinical researches,and have assisted the development of investigational drug products.An AAV1-based investigational product,Glybera,has been formally approved by European Commission for the treatment of lipoprotein lipase deficiency(LPLD).Glybera was the first gene therapy product in the western world,and the production process involves a scalable baculovirus-insect cell system.However,many problems still need to be solved to improve the productivity and quality of AAV.The present review gives critical insights into current state-of-the-art scalable producing methodologies of AAV,such as baculovirus-insect cell system,HSV complementation system,and Ad complementation system,along with a discussion on the problems,solutions,and developmental trends.Novel AAV-producing platforms in Saccharomyces cerevisiae and vaccinia virus complementation system will also be discussed.
文摘Immunotherapy has become the fourth cancer therapy after surgery, chemotherapy, and radiotherapy. In particular, immune checkpoint inhibitors are proved to be unprecedentedly in increasing the overall survival rates of patients with refractory cancers, such as advanced melanoma, non-small cell lung cancer, and renal cell carcinoma. However, inhibitor therapies are only effective in a small proportion of patients with problems, such as side effects and high costs. Therefore, doctors urgently need reliable predictive biomarkers for checkpoint inhibitor therapies to choose the optimal therapies. Here, we review the biomarkers that can serve as potential predictors of the outcomes of immune checkpoint inhibitor treatment, including tumor-specific profiles and tumor microenvironment evaluation and other factors.
基金National Key R&D Program of China(2016YFA0301300)National Natural Science Foundation of China(NSFC)(61275201,61372037)+2 种基金BUPT Excellent Ph.D.Students Foundation(CX2016204,CX2017401)Fundamental Research Funds for the Central Universities(2016RC24)Fund of State Key Laboratory of Information Photonics and Optical Communications(IPOC20172204)
文摘We propose and numerically investigate an efficient transmission-mode metasurface that consists of quasi- continuous trapezoid-shaped crystalline silicon nanoantennas on a quartz substrate. This metasurface provides a linear phase gradient and realizes both full 2Jr phase shift and high transmission efficiency in the operating wavelength range from 740 to 780 nm. At the central wavelength around 751 nm, the total transmission efficiency is up to 88.0% and the section of the desired anomalous refraction is 80.4%. The anomalous refraction angle is 29.62°, and larger refraction angle can be achieved by changing the period of the super cell. We demonstrate a refraction angle as large as 38.59°, and the anomalous transmission efficiency reaches 76.6% at wavelength of 741 nm. It is worth mentioning that the structure is much simpler than conventional metasurfaces based on arrays of discrete nanoantennas. Our research may pave the way for designing efficient all-dielectric phase-gradient metasurfaces and applying them in integrated optical devices for wavefront control.