This study investigated the specific mechanism of knockdown of neuropeptide Y(NPY) in reducing obesity-induced insulin resistance in the white adipose tissue. Adeno-associated virus(AAV)-mediated RNAi was utilized to ...This study investigated the specific mechanism of knockdown of neuropeptide Y(NPY) in reducing obesity-induced insulin resistance in the white adipose tissue. Adeno-associated virus(AAV)-mediated RNAi was utilized to downregulate NPY expression in rats fed either regular chow or high fat diet. By investigating the differences in rat body weight and food intake, we assessed the effect of knockdown of NPY expression on insulin sensitivity and β-cell proliferation. Glucose consumption and 2-[3 H]DG uptake in 3 T3-L1 adipocytes were assessed to determine the molecular mechanisms. The results showed that knockdown of NPY expression in the dorsomedial hypothalamus(DMH) reduced obesity-induced insulin resistance, increased glucose consumption, and decreased 2-[3 H]DG uptake in 3 T3-L1 adipocytes via the PI3 K/Akt/GSK-3β signaling pathways and the NPY Y5 receptor.展开更多
基金Supported by the Zhengzhou Science and Technology Innovation Team Project(131PCXTD631)
文摘This study investigated the specific mechanism of knockdown of neuropeptide Y(NPY) in reducing obesity-induced insulin resistance in the white adipose tissue. Adeno-associated virus(AAV)-mediated RNAi was utilized to downregulate NPY expression in rats fed either regular chow or high fat diet. By investigating the differences in rat body weight and food intake, we assessed the effect of knockdown of NPY expression on insulin sensitivity and β-cell proliferation. Glucose consumption and 2-[3 H]DG uptake in 3 T3-L1 adipocytes were assessed to determine the molecular mechanisms. The results showed that knockdown of NPY expression in the dorsomedial hypothalamus(DMH) reduced obesity-induced insulin resistance, increased glucose consumption, and decreased 2-[3 H]DG uptake in 3 T3-L1 adipocytes via the PI3 K/Akt/GSK-3β signaling pathways and the NPY Y5 receptor.