Non-Darcian radial flow toward a finite-diameter, fully penetrating well in a confined aquifer was analyzed on the basis of the Izbash equation with consideration of the wellbore storage effect. We derived semi-analyt...Non-Darcian radial flow toward a finite-diameter, fully penetrating well in a confined aquifer was analyzed on the basis of the Izbash equation with consideration of the wellbore storage effect. We derived semi-analytical solutions of drawdown by using the Boltzmann transform, and obtained approximate analytical solutions of the drawdown at early and late times. MATLAB programs were developed to facilitate computation of the semi-analytical solutions. The turbulence factor v which was directly related to the pumping rate appeared to have negligible influence upon the wellbore well function at early times, but imposed significant influence at intermediate and late times. However, the turbulence factor v imposed non-negligible influence upon the aquifer well function during the entire pumping period, provided that the observation point was not sufficiently close to the wellbore. Sensitivity analysis indicated that the power index n in the Izbash equation had less influence on the type curves at the face of the pumping wellbore, but had much greater influence upon the well function in the aquifer. As the n values increased, the drawdown in the aquifer decreased at early times and increased at late times. The Boltzmann transformation could only be used in an approximate sense for radial non-Darcian flow problems. This approximation would provide accurate solutions at early times, and introduce small but consistent discrepancies at intermediate and late times for the wellbore well function.展开更多
To study the relationships between the friction factor f and the flow type in a single rough fracture, the formulae of f for both unconfined and confined flows are deduced based on previous studies. The relationships ...To study the relationships between the friction factor f and the flow type in a single rough fracture, the formulae of f for both unconfined and confined flows are deduced based on previous studies. The relationships between f and the Reynolds number (Re) for different relative roughnesses are investigated experimentally. The Moody-type diagram, based on the deduced formula of f, is also plotted and the hydraulic characteristics of the flow in a rough fracture are analyzed. Results show that the Moody-type diagram of the experiment has a similar distribution to that of the conventional Moody diagram. It is found that the value of f in the experiment is much smaller than that of the conventional Moody diagram and turbulent flow appears easier for rough fractures, which can be explained by the separation phenomenon in boundary layers. The critical Re ranging from 650 to 700 in rough fractures is concluded based on the experimental results. It also can be concluded that the friction factor f is related not only with the Re and the relative roughness but also with the absolute roughness.展开更多
基金the National Natural Science Foundation of China (Nos.50428907 and 50479011)
文摘Non-Darcian radial flow toward a finite-diameter, fully penetrating well in a confined aquifer was analyzed on the basis of the Izbash equation with consideration of the wellbore storage effect. We derived semi-analytical solutions of drawdown by using the Boltzmann transform, and obtained approximate analytical solutions of the drawdown at early and late times. MATLAB programs were developed to facilitate computation of the semi-analytical solutions. The turbulence factor v which was directly related to the pumping rate appeared to have negligible influence upon the wellbore well function at early times, but imposed significant influence at intermediate and late times. However, the turbulence factor v imposed non-negligible influence upon the aquifer well function during the entire pumping period, provided that the observation point was not sufficiently close to the wellbore. Sensitivity analysis indicated that the power index n in the Izbash equation had less influence on the type curves at the face of the pumping wellbore, but had much greater influence upon the well function in the aquifer. As the n values increased, the drawdown in the aquifer decreased at early times and increased at late times. The Boltzmann transformation could only be used in an approximate sense for radial non-Darcian flow problems. This approximation would provide accurate solutions at early times, and introduce small but consistent discrepancies at intermediate and late times for the wellbore well function.
基金supported by the Program for New Century Excellent Talents in Universities (Grant No.NCET-06-0541)the National Natural Science Foundation of China (Grant Nos.40672154,40772153)
文摘To study the relationships between the friction factor f and the flow type in a single rough fracture, the formulae of f for both unconfined and confined flows are deduced based on previous studies. The relationships between f and the Reynolds number (Re) for different relative roughnesses are investigated experimentally. The Moody-type diagram, based on the deduced formula of f, is also plotted and the hydraulic characteristics of the flow in a rough fracture are analyzed. Results show that the Moody-type diagram of the experiment has a similar distribution to that of the conventional Moody diagram. It is found that the value of f in the experiment is much smaller than that of the conventional Moody diagram and turbulent flow appears easier for rough fractures, which can be explained by the separation phenomenon in boundary layers. The critical Re ranging from 650 to 700 in rough fractures is concluded based on the experimental results. It also can be concluded that the friction factor f is related not only with the Re and the relative roughness but also with the absolute roughness.