期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Catenary dropper fault identification based on improved FCOS algorithm
1
作者 GU Guimei WEN Bokang +1 位作者 JIA Yaohua zhang cunjun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期571-578,共8页
The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of t... The contact network dropper works in a harsh environment,and suffers from the impact effect of pantographs during running of trains,which may lead to faults such as slack and broken of the dropper wire and broken of the current-carrying ring.Due to the low intelligence and poor accuracy of the dropper fault detection network,an improved fully convolutional one-stage(FCOS)object detection network was proposed to improve the detection capability of the dropper condition.Firstly,by adjusting the parameterαin the network focus loss function,the problem of positive and negative sample imbalance in the network training process was eliminated.Secondly,the generalized intersection over union(GIoU)calculation was introduced to enhance the network’s ability to recognize the relative spatial positions of the prediction box and the bounding box during the regression calculation.Finally,the improved network was used to detect the status of dropper pictures.The detection speed was 150 sheets per millisecond,and the MAP of different status detection was 0.9512.Through the simulation comparison with other object detection networks,it was proved that the improved FCOS network had advantages in both detection time and accuracy,and could identify the state of dropper accurately. 展开更多
关键词 catenary dropper fully convolutional one-stage(FCOS)network defect identification generalized intersection over union(GIoU) focal loss
下载PDF
基于改进Faster R-CNN的接触网管帽目标定位算法 被引量:7
2
作者 顾桂梅 陈充 +3 位作者 余晓宁 张存俊 仝甄 梅小芸 《激光与光电子学进展》 CSCD 北大核心 2022年第4期132-142,共11页
为了改善接触网管帽这类小尺度部件在故障检测过程中定位困难的情况,提出一种基于改进Faster R-CNN的接触网管帽目标定位算法。通过K均值聚类算法(K-means)对region proposal network(RPN)层中生成anchor boxes的比例及面积进行改进,所... 为了改善接触网管帽这类小尺度部件在故障检测过程中定位困难的情况,提出一种基于改进Faster R-CNN的接触网管帽目标定位算法。通过K均值聚类算法(K-means)对region proposal network(RPN)层中生成anchor boxes的比例及面积进行改进,所提算法在定位接触网管帽这类小部件上具有较好的表现。并通过比较VGG16、resnet50、resnet101、resnet152等4种特征提取网络在原始及改进的Faster R-CNN上定位管帽的准确率、召回率、准确率和召回率的调和平均F_(1)、单张检测时间等指标来选择最优特征提取网络。实验结果表明,基于resnet50的改进Faster R-CNN深度网络模型在接触网管帽定位中具有明显的优势,召回率为89.78%,定位准确率可以达到83.16%,F_(1)值为86.34%,单张检测时间为0.283 s。 展开更多
关键词 图像处理 接触网管帽 定位 Faster R-CNN K均值聚类算法 深度学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部