Constructing metamodel with global high-fidelity in design space is significant in engineering design. In this paper, a double-stage metamodel (DSM) which integrates advantages of both interpolation metamodel and re...Constructing metamodel with global high-fidelity in design space is significant in engineering design. In this paper, a double-stage metamodel (DSM) which integrates advantages of both interpolation metamodel and regression metamodel is constructed. It takes regression model as the first stage to fit overall distribution of the original model, and then interpolation model of regression model approximation error is used as the second stage to improve accuracy. Under the same conditions and with the same samples, DSM expresses higher fidelity and represents physical characteristics of original model better. Besides, in order to validate DSM characteristics, three examples including Ackley function, airfoil aerodynamic analysis and wing aerodynamic analysis are investigated, In the end, airfoil and wing aerodynamic design optimizations using genetic algorithm are presented to verify the engineering applicability of DSM.展开更多
Constructing high approximation accuracy surrogate model with lower computational cost has great engineering significance. In this paper, using co-Kriging method, an efficient multi-fidelity surrogate model is constru...Constructing high approximation accuracy surrogate model with lower computational cost has great engineering significance. In this paper, using co-Kriging method, an efficient multi-fidelity surrogate model is constructed based on two independent high and low fidelity samples. Co-Kriging method can use a greater quantity of low-fidelity information to enhance the accuracy of a surrogate of the high-fidelity model by modeling the correlation between high and low fidelity model, thus computational cost of building surrogate model can be greatly reduced. A wing-body problem is taken as an example to compare characteristics of co-Kriging multi-fidelity (CKMF) model with traditional Kriging based multi-fidelity (KMF) model. A sampling convergence of the CKMF model and the KMF model is conducted, and an appropriate sampling design is selected through the sampling convergence analysis. The results indicate that CKMF model has higher approximation accuracy with the same high-fidelity samples, and converges at less high-fidelity samples. A wing-body drag reduction optimization design using genetic algorithm is implemented. Satisfying design results are obtained, which validate the feasibility of CKMF model in engineering design.展开更多
文摘Constructing metamodel with global high-fidelity in design space is significant in engineering design. In this paper, a double-stage metamodel (DSM) which integrates advantages of both interpolation metamodel and regression metamodel is constructed. It takes regression model as the first stage to fit overall distribution of the original model, and then interpolation model of regression model approximation error is used as the second stage to improve accuracy. Under the same conditions and with the same samples, DSM expresses higher fidelity and represents physical characteristics of original model better. Besides, in order to validate DSM characteristics, three examples including Ackley function, airfoil aerodynamic analysis and wing aerodynamic analysis are investigated, In the end, airfoil and wing aerodynamic design optimizations using genetic algorithm are presented to verify the engineering applicability of DSM.
基金supported by the Seventh Framework Programme of China-EU Collaborative Projects
文摘Constructing high approximation accuracy surrogate model with lower computational cost has great engineering significance. In this paper, using co-Kriging method, an efficient multi-fidelity surrogate model is constructed based on two independent high and low fidelity samples. Co-Kriging method can use a greater quantity of low-fidelity information to enhance the accuracy of a surrogate of the high-fidelity model by modeling the correlation between high and low fidelity model, thus computational cost of building surrogate model can be greatly reduced. A wing-body problem is taken as an example to compare characteristics of co-Kriging multi-fidelity (CKMF) model with traditional Kriging based multi-fidelity (KMF) model. A sampling convergence of the CKMF model and the KMF model is conducted, and an appropriate sampling design is selected through the sampling convergence analysis. The results indicate that CKMF model has higher approximation accuracy with the same high-fidelity samples, and converges at less high-fidelity samples. A wing-body drag reduction optimization design using genetic algorithm is implemented. Satisfying design results are obtained, which validate the feasibility of CKMF model in engineering design.