The goal of a de-noising algorithm is to reconstruct a signal from its noise-corrupted observations. Perfect reconstruction is seldom possible and performance is measured under a given fidelity criterion. In a recent ...The goal of a de-noising algorithm is to reconstruct a signal from its noise-corrupted observations. Perfect reconstruction is seldom possible and performance is measured under a given fidelity criterion. In a recent work, the authors addressed a new Matlab algorithm for de-noising. A key method of the algorithm is selecting an optimal basis from a library of wavelet bases for ideal de-noising. The algorithm with an optimal basis from a library of wavelet bases for de-noising was created through making use of Matlab's Wavelet Toolbox. The experimental results show that the new algorithm is efficient in signal de-nosing.展开更多
文摘The goal of a de-noising algorithm is to reconstruct a signal from its noise-corrupted observations. Perfect reconstruction is seldom possible and performance is measured under a given fidelity criterion. In a recent work, the authors addressed a new Matlab algorithm for de-noising. A key method of the algorithm is selecting an optimal basis from a library of wavelet bases for ideal de-noising. The algorithm with an optimal basis from a library of wavelet bases for de-noising was created through making use of Matlab's Wavelet Toolbox. The experimental results show that the new algorithm is efficient in signal de-nosing.