针对Gmapping SLAM(simultaneous location and mapping)算法在地图构建过程中对里程计定位精度要求较高且存在粒子耗散、退化等问题,本文首先设计出并行视觉识别与定位网络,用视觉特征与定位信息弥补粒子退化与激光点的漂移,强化定位能...针对Gmapping SLAM(simultaneous location and mapping)算法在地图构建过程中对里程计定位精度要求较高且存在粒子耗散、退化等问题,本文首先设计出并行视觉识别与定位网络,用视觉特征与定位信息弥补粒子退化与激光点的漂移,强化定位能力,提高语义信息与构图精度;其次优化提议分布,将观测模型从里程计观测模型变换为激光观测模型并进行高斯采样,用更少的粒子覆盖机器人的概率分布;最后通过贝叶斯规则将视觉信息与激光信息融合,利用仿真工具、机器人平台与原算法进行对比,实验结果表明该算法不仅有效地提高地图构建的精确度与鲁棒性而且丰富了地图的语义信息。展开更多
文摘针对Gmapping SLAM(simultaneous location and mapping)算法在地图构建过程中对里程计定位精度要求较高且存在粒子耗散、退化等问题,本文首先设计出并行视觉识别与定位网络,用视觉特征与定位信息弥补粒子退化与激光点的漂移,强化定位能力,提高语义信息与构图精度;其次优化提议分布,将观测模型从里程计观测模型变换为激光观测模型并进行高斯采样,用更少的粒子覆盖机器人的概率分布;最后通过贝叶斯规则将视觉信息与激光信息融合,利用仿真工具、机器人平台与原算法进行对比,实验结果表明该算法不仅有效地提高地图构建的精确度与鲁棒性而且丰富了地图的语义信息。