This paper proposes a novel robust image watermarking scheme for digital images using local invariant features and Independent Component Analysis (ICA). Most present watermarking algorithms are unable to resist geom...This paper proposes a novel robust image watermarking scheme for digital images using local invariant features and Independent Component Analysis (ICA). Most present watermarking algorithms are unable to resist geometric distortions that desynchronize the location. The method we propose here is robust to geometric attacks. In order to resist geometric distortions, we use a local invariant feature of the image called the scale invariant feature transform, which is invariant to translation and scaling distortions. The watermark is inserted into the circular patches generated by scale-invariant key point extractor. Rotation invariance is achieved using the translation property of the polar-mapped circular patches. Our method belongs to the blind watermark category, because we use Independent Component Analysis for detection that does not need the original image during detection. Experimental results show that our method is robust against geometric distortion attacks as well as signal-processing attacks.展开更多
基金Supported by the National Natural Science Foun-dation of China (60373062 ,60573045)
文摘This paper proposes a novel robust image watermarking scheme for digital images using local invariant features and Independent Component Analysis (ICA). Most present watermarking algorithms are unable to resist geometric distortions that desynchronize the location. The method we propose here is robust to geometric attacks. In order to resist geometric distortions, we use a local invariant feature of the image called the scale invariant feature transform, which is invariant to translation and scaling distortions. The watermark is inserted into the circular patches generated by scale-invariant key point extractor. Rotation invariance is achieved using the translation property of the polar-mapped circular patches. Our method belongs to the blind watermark category, because we use Independent Component Analysis for detection that does not need the original image during detection. Experimental results show that our method is robust against geometric distortion attacks as well as signal-processing attacks.