We consider the dynamics of locally coupled calcium oscillation systems,each cell is subjected to extracel-lular contaminated signal,which contains common sub-threshold signal and independent Gaussian noise.It is foun...We consider the dynamics of locally coupled calcium oscillation systems,each cell is subjected to extracel-lular contaminated signal,which contains common sub-threshold signal and independent Gaussian noise.It is found thatintermediate noise can enhance synchronized oscillations of calcium ions,where the frequency of noise-induced oscilla-tions is matched with the one of sub-threshold external signal.We show that synchronization is enhanced as a result ofthe entrainment of external signal Furthermore,the effect of coupling strength is considered.We find above-mentionedphenomenon exists only when coupling strength is very small.Our findings may exhibit that noise can enhance thedetection of feeble external signal through the mechanism of synchronization of intercellular calcium ions.展开更多
基金the Educational Commission of Anhui Province of China under Grant No.KJ2007A079the Research Fund of Anhui Normal University under Grant No.2006xzx09+1 种基金the Doctoral Sponsor Foundation of Anhui Normal University under Grant No.2007BSQDJJthe Key Subject Foundation of Anhui Province for Atomic and Molecular Physics
文摘We consider the dynamics of locally coupled calcium oscillation systems,each cell is subjected to extracel-lular contaminated signal,which contains common sub-threshold signal and independent Gaussian noise.It is found thatintermediate noise can enhance synchronized oscillations of calcium ions,where the frequency of noise-induced oscilla-tions is matched with the one of sub-threshold external signal.We show that synchronization is enhanced as a result ofthe entrainment of external signal Furthermore,the effect of coupling strength is considered.We find above-mentionedphenomenon exists only when coupling strength is very small.Our findings may exhibit that noise can enhance thedetection of feeble external signal through the mechanism of synchronization of intercellular calcium ions.