湘北常澧山地-丘陵地区地理地质环境复杂,滑坡地质灾害点多、面广、零散、频发,是造成人员伤亡和经济损失最主要的地质灾害类型。InSAR、光学遥感、LiDAR、GIS多源遥感综合技术,是目前可行性高、精度良好的滑坡地灾隐患识别和监测技术方...湘北常澧山地-丘陵地区地理地质环境复杂,滑坡地质灾害点多、面广、零散、频发,是造成人员伤亡和经济损失最主要的地质灾害类型。InSAR、光学遥感、LiDAR、GIS多源遥感综合技术,是目前可行性高、精度良好的滑坡地灾隐患识别和监测技术方法,能够满足宏观大范围、时效性等要求。该文基于InSAR形变速率数据、多光谱影像和DEM数据对湖南常澧地区的滑坡地灾隐患进行了识别和提取:首先用2种决策树分类方法对多光谱图像进行了土地利用分类,以便于观察研究区的用地类别及分布情况;然后运用DEM数据提取了高程、坡度、坡向、起伏度和曲率等5项地形地貌因子对研究区进行了滑坡危险性评价;再基于SBAS-InSAR技术对研究区进行地表时序微形变测量;最后在GIS系统内综合危险性评价结果和形变速率对研究区滑坡隐患进行提取和圈定,并基于CART决策树分类结果和研究区水系分布情况,对研究区内除圈定的滑坡隐患点以外的形变速率大于-0.01 m/a的区域进行了危险性推断。本次研究在植被覆盖区和裸露区识别出了数处隐蔽性高、规模小的滑坡隐患,并圈定了滑坡隐患的空间分布范围,面积0.126 km 2,证明了技术方法的有效性,具有一定的实践应用价值。展开更多
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on...To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.展开更多
Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator ...Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.展开更多
文摘湘北常澧山地-丘陵地区地理地质环境复杂,滑坡地质灾害点多、面广、零散、频发,是造成人员伤亡和经济损失最主要的地质灾害类型。InSAR、光学遥感、LiDAR、GIS多源遥感综合技术,是目前可行性高、精度良好的滑坡地灾隐患识别和监测技术方法,能够满足宏观大范围、时效性等要求。该文基于InSAR形变速率数据、多光谱影像和DEM数据对湖南常澧地区的滑坡地灾隐患进行了识别和提取:首先用2种决策树分类方法对多光谱图像进行了土地利用分类,以便于观察研究区的用地类别及分布情况;然后运用DEM数据提取了高程、坡度、坡向、起伏度和曲率等5项地形地貌因子对研究区进行了滑坡危险性评价;再基于SBAS-InSAR技术对研究区进行地表时序微形变测量;最后在GIS系统内综合危险性评价结果和形变速率对研究区滑坡隐患进行提取和圈定,并基于CART决策树分类结果和研究区水系分布情况,对研究区内除圈定的滑坡隐患点以外的形变速率大于-0.01 m/a的区域进行了危险性推断。本次研究在植被覆盖区和裸露区识别出了数处隐蔽性高、规模小的滑坡隐患,并圈定了滑坡隐患的空间分布范围,面积0.126 km 2,证明了技术方法的有效性,具有一定的实践应用价值。
基金supported by the Natural Science Basic Research Prog ram of Shaanxi(2022JQ-593)。
文摘To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.
基金supported by Natural Science Basic Research Program of Shaanxi(2022JQ-593)Key Research and Development Program of Shaanxi(2022GY-089)。
文摘Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.