In this study, we explored the neural mechanism of global topological perception in the human visual system. We showed strong evidence that the retinotectal pathway in the archicortex of the human brain is responsible...In this study, we explored the neural mechanism of global topological perception in the human visual system. We showed strong evidence that the retinotectal pathway in the archicortex of the human brain is responsible for global topological perception, and for modulating the local feature processing in the classical ventral visual pathway. Inspired by this recent cognitive discovery,we developed a novel CogNet architecture to emulate the global-local dichotomy of human visual cognitive mechanisms. The thorough experimental results indicate that the proposed CogNet not only significantly improves image classification accuracies but also effectively addresses the texture bias problem observed in baseline CNN models. We have also conducted mathematical analysis for the generalization gap for general neural networks. Our theoretical derivations suggest that the Hurst parameter, a measure of the curvature of the loss landscape, can closely bind the generalization gap. A larger Hurst parameter corresponds to a better generalization ability. We found that our proposed CogNet achieves a lower test error and attains a larger Hurst parameter,strengthening its superiority over the baseline CNN models further.展开更多
Regression is one of the important problems in statistical learning theory. This paper proves the global convergence of the piecewise regression algorithm based on deterministic annealing and continuity of global mini...Regression is one of the important problems in statistical learning theory. This paper proves the global convergence of the piecewise regression algorithm based on deterministic annealing and continuity of global minimum of free energy w.r.t temperature, and derives a new simplified formula to compute the initial critical temperature. A new enhanced plecewise regression algorithm by using "migration of prototypes" is proposed to eliminate "empty cell" in the annealing process. Numerical experiments on several benchmark datasets show that the new algorithm can remove redundancy and improve generalization of the piecewise regression model.展开更多
基金supported by the National Key Research and Development Project of China (Grant No. 2020AAA0105600)the National Natural Science Foundation of China (Grant Nos. U21B2048 and 62276208)+1 种基金Shenzhen Key Technical Projects (Grant No. CJGJZD2022051714160501)the Chinese Academy of Sciences (Grant Nos. 2021091 and YSBR-068)。
文摘In this study, we explored the neural mechanism of global topological perception in the human visual system. We showed strong evidence that the retinotectal pathway in the archicortex of the human brain is responsible for global topological perception, and for modulating the local feature processing in the classical ventral visual pathway. Inspired by this recent cognitive discovery,we developed a novel CogNet architecture to emulate the global-local dichotomy of human visual cognitive mechanisms. The thorough experimental results indicate that the proposed CogNet not only significantly improves image classification accuracies but also effectively addresses the texture bias problem observed in baseline CNN models. We have also conducted mathematical analysis for the generalization gap for general neural networks. Our theoretical derivations suggest that the Hurst parameter, a measure of the curvature of the loss landscape, can closely bind the generalization gap. A larger Hurst parameter corresponds to a better generalization ability. We found that our proposed CogNet achieves a lower test error and attains a larger Hurst parameter,strengthening its superiority over the baseline CNN models further.
基金the National Natural Science Foundation of China(Grant Nos.60675013 and 4022500)the National Basic Research Program of China(973 Program)(Grant No.2007CB311002)
文摘Regression is one of the important problems in statistical learning theory. This paper proves the global convergence of the piecewise regression algorithm based on deterministic annealing and continuity of global minimum of free energy w.r.t temperature, and derives a new simplified formula to compute the initial critical temperature. A new enhanced plecewise regression algorithm by using "migration of prototypes" is proposed to eliminate "empty cell" in the annealing process. Numerical experiments on several benchmark datasets show that the new algorithm can remove redundancy and improve generalization of the piecewise regression model.