Air entrapment is an important consideration in environments with shallow water tables and sandy soil, like the condition of highly conductive sandy soils and flat topography in Florida, USA. It causes water table ris...Air entrapment is an important consideration in environments with shallow water tables and sandy soil, like the condition of highly conductive sandy soils and flat topography in Florida, USA. It causes water table rises in soils, which are significantly faster and higher than those in soils without air entrapment. Two numerical models, Integrated Hydrologic Model (IHM) and HYDRUS-1D (a single-phase, one-dimensional Richards′ equation model) were tested at an area of west central Florida to help further understanding the shallow water table behavior during a long term air entrapment. This investigation employed field data with two modeling approaches to quantify the variation of air pressurization values. It was found that the air pressurization effect was responsible at time up to 40 cm of water table rise being recorded by the observation well for these two models. The values of air pressurization calculated from IHM and HYDRUS-1D match the previously published values. Results also indicated that the two numerical models did not consider air entrapment effect (as the predictive parameters remain uncertain) and thus results of depth to water table from these models did not compare to the observations for these selected periods. Incorporating air entrapment in prediction models is critical to reproduce shallow water table observations.展开更多
[Objective] The aim was to study the mechanism of the removal effect of methylene blue(MB) by rice husk ash(RHA).[Method] The effects of contact time and pH on the adsorption of MB by rice husk ash were investigated,a...[Objective] The aim was to study the mechanism of the removal effect of methylene blue(MB) by rice husk ash(RHA).[Method] The effects of contact time and pH on the adsorption of MB by rice husk ash were investigated,and the mechanism was discussed.[Result] RHA exhibited a remarkable ability on the adsorption of MB.The process of adsorption reached the equilibrium after 30 min,at about pH 9.The adsorption effect was explored with the aid of ion beam etching technique,which displayed that there were two main adsorption manners.One was the electrostatic interactions,through which the negatively charged RHA could adsorb the positively charged MB,the other was the porous effect due to the huge specific surface area of the micro/nano-scale porous silica in RHA,and MB could be adsorbed and deposited into the pores.[Conclusion] RHA could be used in the treatment of textile wastewater.Ion beam technology might be used as an effective way to investigate the adsorption effect.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40901026)International Cooperation Project of Ministry of Science and Technology of China (No. 2010DFA92400)Tampa Bay Water and South Florida Water Management District (TBW and SFWMD) Project
文摘Air entrapment is an important consideration in environments with shallow water tables and sandy soil, like the condition of highly conductive sandy soils and flat topography in Florida, USA. It causes water table rises in soils, which are significantly faster and higher than those in soils without air entrapment. Two numerical models, Integrated Hydrologic Model (IHM) and HYDRUS-1D (a single-phase, one-dimensional Richards′ equation model) were tested at an area of west central Florida to help further understanding the shallow water table behavior during a long term air entrapment. This investigation employed field data with two modeling approaches to quantify the variation of air pressurization values. It was found that the air pressurization effect was responsible at time up to 40 cm of water table rise being recorded by the observation well for these two models. The values of air pressurization calculated from IHM and HYDRUS-1D match the previously published values. Results also indicated that the two numerical models did not consider air entrapment effect (as the predictive parameters remain uncertain) and thus results of depth to water table from these models did not compare to the observations for these selected periods. Incorporating air entrapment in prediction models is critical to reproduce shallow water table observations.
基金Supported by National Natural Science Foundation of China (No.10975154)State Key Lab of Electroanalytical Chemistry,Changchun Institute of Applied Chemistry,CAS (SKLEA 201104)
文摘[Objective] The aim was to study the mechanism of the removal effect of methylene blue(MB) by rice husk ash(RHA).[Method] The effects of contact time and pH on the adsorption of MB by rice husk ash were investigated,and the mechanism was discussed.[Result] RHA exhibited a remarkable ability on the adsorption of MB.The process of adsorption reached the equilibrium after 30 min,at about pH 9.The adsorption effect was explored with the aid of ion beam etching technique,which displayed that there were two main adsorption manners.One was the electrostatic interactions,through which the negatively charged RHA could adsorb the positively charged MB,the other was the porous effect due to the huge specific surface area of the micro/nano-scale porous silica in RHA,and MB could be adsorbed and deposited into the pores.[Conclusion] RHA could be used in the treatment of textile wastewater.Ion beam technology might be used as an effective way to investigate the adsorption effect.