作物病虫害研究是人工智能技术与智慧农业交叉领域的热点问题。现有的研究受到数据获取困难、技术实施成本高以及作物病虫害发生态势复杂等因素的限制。北京市“植物诊所”形成的植物电子病历(plant electronic medical records,PEMRs)...作物病虫害研究是人工智能技术与智慧农业交叉领域的热点问题。现有的研究受到数据获取困难、技术实施成本高以及作物病虫害发生态势复杂等因素的限制。北京市“植物诊所”形成的植物电子病历(plant electronic medical records,PEMRs)为作物病虫害的诊断与防治提供了新的研究方向。PEMRs以多模态数据的形式存储,包含了丰富的植物信息、病虫害信息和环境信息,如何挖掘PEMRs信息并利用其辅助后续研究是亟待解决的问题。鉴于知识图谱的信息表示能力、机器学习的挖掘能力和深度学习的特征抽取能力,根据电子病历特点,利用结构化数据构建作物病虫害知识图谱,利用非结构化数据和领域知识进行知识增强,进一步利用Neo4j图数据库和图数据科学(graph data science,GDS)结合机器学习算法从“热”点发现、联系链路发现、相似病虫害发现3个维度进行关联挖掘。在此基础上,将基于Transformer的双向编码器(bidirectional encoder representation from transformers,BERT)与卷积神经网络(convolutional neural network,CNN)结合,利用非结构化文本数据实现文本特征抽取和病虫害诊断,模拟植物医生实现智能化服务,在20种常见病虫害上的综合准确率可达到93.13%。本研究可为作物病虫害的及时诊断、对症防治、科学用药和辅助决策提供理论支持,创新了农业科技社会化服务新模式、新业态。展开更多
基于图像处理和深度学习技术,该研究构建了一个基于卷积神经网络的温室黄瓜病害识别系统。针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color features,CCF)及...基于图像处理和深度学习技术,该研究构建了一个基于卷积神经网络的温室黄瓜病害识别系统。针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color features,CCF)及其检测方法,通过将该颜色特征与传统区域生长算法结合,实现了温室黄瓜病斑图像的准确分割。基于温室黄瓜病斑图像,构建了温室黄瓜病害识别分类器的输入数据集,并采用数据增强方法将输入数据集的数据量扩充了12倍。基于扩充后的数据集,构建了基于卷积神经网络的病害识别分类器并利用梯度下降算法进行模型训练、验证与测试。系统试验结果表明,针对含有光照不均匀和复杂背景等噪声的黄瓜病害图像,该系统能够快速、准确的实现温室黄瓜病斑图像分割,分割准确率为97.29%;基于分割后的温室黄瓜病斑图像,该系统能够实现准确的病害识别,识别准确率为95.7%,其中,霜霉病识别准确率为93.1%,白粉病识别准确率为98.4%。展开更多
文摘作物病虫害研究是人工智能技术与智慧农业交叉领域的热点问题。现有的研究受到数据获取困难、技术实施成本高以及作物病虫害发生态势复杂等因素的限制。北京市“植物诊所”形成的植物电子病历(plant electronic medical records,PEMRs)为作物病虫害的诊断与防治提供了新的研究方向。PEMRs以多模态数据的形式存储,包含了丰富的植物信息、病虫害信息和环境信息,如何挖掘PEMRs信息并利用其辅助后续研究是亟待解决的问题。鉴于知识图谱的信息表示能力、机器学习的挖掘能力和深度学习的特征抽取能力,根据电子病历特点,利用结构化数据构建作物病虫害知识图谱,利用非结构化数据和领域知识进行知识增强,进一步利用Neo4j图数据库和图数据科学(graph data science,GDS)结合机器学习算法从“热”点发现、联系链路发现、相似病虫害发现3个维度进行关联挖掘。在此基础上,将基于Transformer的双向编码器(bidirectional encoder representation from transformers,BERT)与卷积神经网络(convolutional neural network,CNN)结合,利用非结构化文本数据实现文本特征抽取和病虫害诊断,模拟植物医生实现智能化服务,在20种常见病虫害上的综合准确率可达到93.13%。本研究可为作物病虫害的及时诊断、对症防治、科学用药和辅助决策提供理论支持,创新了农业科技社会化服务新模式、新业态。
文摘基于图像处理和深度学习技术,该研究构建了一个基于卷积神经网络的温室黄瓜病害识别系统。针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color features,CCF)及其检测方法,通过将该颜色特征与传统区域生长算法结合,实现了温室黄瓜病斑图像的准确分割。基于温室黄瓜病斑图像,构建了温室黄瓜病害识别分类器的输入数据集,并采用数据增强方法将输入数据集的数据量扩充了12倍。基于扩充后的数据集,构建了基于卷积神经网络的病害识别分类器并利用梯度下降算法进行模型训练、验证与测试。系统试验结果表明,针对含有光照不均匀和复杂背景等噪声的黄瓜病害图像,该系统能够快速、准确的实现温室黄瓜病斑图像分割,分割准确率为97.29%;基于分割后的温室黄瓜病斑图像,该系统能够实现准确的病害识别,识别准确率为95.7%,其中,霜霉病识别准确率为93.1%,白粉病识别准确率为98.4%。