Statistical inference on parametric part for the partially linear single-index model (PLSIM) is considered in this paper. A profile least-squares technique for estimating the parametric part is proposed and the asympt...Statistical inference on parametric part for the partially linear single-index model (PLSIM) is considered in this paper. A profile least-squares technique for estimating the parametric part is proposed and the asymptotic normality of the profile least-squares estimator is given. Based on the estimator, a generalized likelihood ratio (GLR) test is proposed to test whether parameters on linear part for the model is under a contain linear restricted condition. Under the null model, the proposed GLR statistic follows asymptotically the χ2-distribution with the scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Both simulated and real data examples are used to illustrate our proposed methods.展开更多
In this paper, based on spline approximation, the authors propose a unified variable selection approach for single-index model via adaptive L1 penalty. The calculation methods of the proposed estimators are given on t...In this paper, based on spline approximation, the authors propose a unified variable selection approach for single-index model via adaptive L1 penalty. The calculation methods of the proposed estimators are given on the basis of the known lars algorithm. Under some regular conditions, the authors demonstrate the asymptotic properties of the proposed estimators and the oracle properties of adaptive LASSO(aL ASSO) variable selection. Simulations are used to investigate the performances of the proposed estimator and illustrate that it is effective for simultaneous variable selection as well as estimation of the single-index models.展开更多
This paper considers the feature screening and variable selection for ultrahigh dimensional covariates. The new feature screening procedure base on conditional expectation which is used to differentiate whether an exp...This paper considers the feature screening and variable selection for ultrahigh dimensional covariates. The new feature screening procedure base on conditional expectation which is used to differentiate whether an explanatory variable contributes to a response variable or not, without requiring a specific parametric form of the underlying data model. The authors estimate the marginal condi- tional expectation by kernel regression estimator. The proposed method is showed to have sure screen property. The authors propose an iterative kernel estimator algorithm to reduce the ultrahigh dimensionality to an appropriate scale. Simulation results and real data analysis demonstrate the proposed method works well and performs better than competing methods.展开更多
The Student-t regression model is a useful extension of the normal model,which can be used for statistical modeling of data sets involving errors with heavy tails and/or outliers and provides robust estimation of mean...The Student-t regression model is a useful extension of the normal model,which can be used for statistical modeling of data sets involving errors with heavy tails and/or outliers and provides robust estimation of means and regression coefficients.In this paper,the varying dispersion Student-t regression model is discussed,in which both the mean and the dispersion depend upon explanatory variables.The problem of interest is simultaneously select significant variables both in mean and dispersion model.A unified procedure which can simultaneously select significant variable is given.With appropriate selection of the tuning parameters,the consistency and the oracle property of the regularized estimators are established.Both the simulation study and two real data examples are used to illustrate the proposed methodologies.展开更多
This paper considers the iterative sequential lasso(ISLasso)variable selection for generalized linear model with ultrahigh dimensional feature space.The ISLasso selects features by estimated parameter sequentially ite...This paper considers the iterative sequential lasso(ISLasso)variable selection for generalized linear model with ultrahigh dimensional feature space.The ISLasso selects features by estimated parameter sequentially iteratively for the second order approximation of likelihood function where the features selected depend on regulatory parameters.The procedure stops when extended BIC(EBIC)reaches a minimum.Simulation study demonstrates that the new method is a desirable approach over other methods.展开更多
The partially linear single-index model(PLSIM) is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates. This paper considers the PLSIM with measurement erro...The partially linear single-index model(PLSIM) is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates. This paper considers the PLSIM with measurement error possibly in all the variables. The authors propose a new efficient estimation procedure based on the local linear smoothing and the simulation-extrapolation method,and further establish the asymptotic normality of the proposed estimators for both the index parameter and nonparametric link function. The authors also carry out extensive Monte Carlo simulation studies to evaluate the finite sample performance of the new method, and apply it to analyze the osteoporosis prevention data.展开更多
In many applications,covariates can be naturally grouped.For example,for gene expression data analysis,genes belonging to the same pathway might be viewed as a group.This paper studies variable selection problem for c...In many applications,covariates can be naturally grouped.For example,for gene expression data analysis,genes belonging to the same pathway might be viewed as a group.This paper studies variable selection problem for censored survival data in the additive hazards model when covariates are grouped.A hierarchical regularization method is proposed to simultaneously estimate parameters and select important variables at both the group level and the within-group level.For the situations in which the number of parameters tends to∞as the sample size increases,we establish an oracle property and asymptotic normality property of the proposed estimators.Numerical results indicate that the hierarchically penalized method performs better than some existing methods such as lasso,smoothly clipped absolute deviation(SCAD)and adaptive lasso.展开更多
Single-index varying-coefficient models (SIVCMs) are very useful in multivariate nonparametric regression.However,there has less attention focused on inferences of the SIVCMs.Using the local linear method,we propose e...Single-index varying-coefficient models (SIVCMs) are very useful in multivariate nonparametric regression.However,there has less attention focused on inferences of the SIVCMs.Using the local linear method,we propose estimates of the unknowns in the SIVCMs.In this article,our main purpose is to examine whether the generalized likelihood ratio (GLR) tests are applicable to the testing problem for the index parameter in the SIVCMs.Under the null hypothesis our proposed GLR statistic follows the chi-squared distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters or functions,which is called as Wilks' phenomenon (see Fan et al.,2001).A simulation study is conducted to illustrate the proposed methodology.展开更多
The problem of hazard rate estimation under right-censored assumption has been investigated extensively.Integrated square error(ISE)of estimation is one of the most widely accepted measurements of the global performan...The problem of hazard rate estimation under right-censored assumption has been investigated extensively.Integrated square error(ISE)of estimation is one of the most widely accepted measurements of the global performance for nonparametric kernel estimation.But there are no results available for ISE of hazard rate estimation under right-censored model with censoring indicators missing at random(MAR)so far.This paper constructs an imputation estimator of the hazard rate function and establish asymptotic normality of the ISE for the kernel hazard rate estimator with censoring indicators MAR.At the same time,an asymptotic representation of the mean integrated square error(MISE)is also presented.The finite sample behavior of the estimator is investigated via one simple simulation.展开更多
This article studies the estimation and statistical inference problems of semi-functional partially linear regression models when the covariates in the linear part are measured with additive error. To obtain the estim...This article studies the estimation and statistical inference problems of semi-functional partially linear regression models when the covariates in the linear part are measured with additive error. To obtain the estimation of the parametric component, a corrected profile least-squares based estimation procedure is developed. Asymptotic properties of the proposed estimators are established under some mild assumptions. To test hypothesis on the parametric part, the authors propose a novel test statistic based on the difference between the corrected residual sums of squares under the null and alternative hypotheses, and show that its limiting distribution is a weighted sum of independent standard χ12. Finally, the authors illustrate the finite sample performance of the methods with some simulation studies and a real data application.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.1117111211201190)+1 种基金the Doctoral Fund of Ministry of Education of China(Grant No.20130076110004)the 111 Project of China(Grant No.B14019)
基金supported by National Natural Science Foundation of China (Grant No. 10871072)Natural Science Foundation of Shanxi Province of China (Grant No. 2007011014)PhD Program Scholarship Fund of ECNU 2009
文摘Statistical inference on parametric part for the partially linear single-index model (PLSIM) is considered in this paper. A profile least-squares technique for estimating the parametric part is proposed and the asymptotic normality of the profile least-squares estimator is given. Based on the estimator, a generalized likelihood ratio (GLR) test is proposed to test whether parameters on linear part for the model is under a contain linear restricted condition. Under the null model, the proposed GLR statistic follows asymptotically the χ2-distribution with the scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Both simulated and real data examples are used to illustrate our proposed methods.
基金supported by the National Natural Science Foundation of China under Grant No.61272041
文摘In this paper, based on spline approximation, the authors propose a unified variable selection approach for single-index model via adaptive L1 penalty. The calculation methods of the proposed estimators are given on the basis of the known lars algorithm. Under some regular conditions, the authors demonstrate the asymptotic properties of the proposed estimators and the oracle properties of adaptive LASSO(aL ASSO) variable selection. Simulations are used to investigate the performances of the proposed estimator and illustrate that it is effective for simultaneous variable selection as well as estimation of the single-index models.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.11571112,11501372,11571148,11471160Doctoral Fund of Ministry of Education of China under Grant No.20130076110004+1 种基金Program of Shanghai Subject Chief Scientist under Grant No.14XD1401600the 111 Project of China under Grant No.B14019
文摘This paper considers the feature screening and variable selection for ultrahigh dimensional covariates. The new feature screening procedure base on conditional expectation which is used to differentiate whether an explanatory variable contributes to a response variable or not, without requiring a specific parametric form of the underlying data model. The authors estimate the marginal condi- tional expectation by kernel regression estimator. The proposed method is showed to have sure screen property. The authors propose an iterative kernel estimator algorithm to reduce the ultrahigh dimensionality to an appropriate scale. Simulation results and real data analysis demonstrate the proposed method works well and performs better than competing methods.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.11171112,11101114,11201190the National Statistical Science Research Major Program of China under Grant No.2011LZ051+4 种基金the 111 Project of China under Grant No.B14019the Doctoral Fund of Ministry of Education of China under Grant No.20130076110004the Natural Science Project of Jiangsu Province Education Department under Grant No.13KJB110024the Natural Science Fund of Nantong University under Grant No.13ZY001the Research Project of Social Science and Humanity Fund of the Ministry of Education under Grant No.14YJC910007
文摘The Student-t regression model is a useful extension of the normal model,which can be used for statistical modeling of data sets involving errors with heavy tails and/or outliers and provides robust estimation of means and regression coefficients.In this paper,the varying dispersion Student-t regression model is discussed,in which both the mean and the dispersion depend upon explanatory variables.The problem of interest is simultaneously select significant variables both in mean and dispersion model.A unified procedure which can simultaneously select significant variable is given.With appropriate selection of the tuning parameters,the consistency and the oracle property of the regularized estimators are established.Both the simulation study and two real data examples are used to illustrate the proposed methodologies.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.11571112,11501372,11571148,11471160Doctoral Fund of Ministry of Education of China under Grant No.20130076110004+1 种基金Program of Shanghai Subject Chief Scientist under Grant No.14XD1401600the 111Project of China under Grant No.B14019。
文摘This paper considers the iterative sequential lasso(ISLasso)variable selection for generalized linear model with ultrahigh dimensional feature space.The ISLasso selects features by estimated parameter sequentially iteratively for the second order approximation of likelihood function where the features selected depend on regulatory parameters.The procedure stops when extended BIC(EBIC)reaches a minimum.Simulation study demonstrates that the new method is a desirable approach over other methods.
基金the National Natural Science Foundation of China under Grant Nos. 11971171,11971300, 11901286, 12071267 and 12171310the Shanghai Natural Science Foundation under Grant No.20ZR1421800+2 种基金the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science (East China Normal University)the General Research Fund (HKBU12303421, HKBU12303918)the Initiation Grant for Faculty Niche Research Areas (RC-FNRA-IG/20-21/SCI/03) of Hong Kong Baptist University。
文摘The partially linear single-index model(PLSIM) is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates. This paper considers the PLSIM with measurement error possibly in all the variables. The authors propose a new efficient estimation procedure based on the local linear smoothing and the simulation-extrapolation method,and further establish the asymptotic normality of the proposed estimators for both the index parameter and nonparametric link function. The authors also carry out extensive Monte Carlo simulation studies to evaluate the finite sample performance of the new method, and apply it to analyze the osteoporosis prevention data.
基金supported by National Natural Science Foundation of China(Grant Nos.11171112,11101114 and 11201190)National Statistical Science Research Major Program of China(Grant No.2011LZ051)
文摘In many applications,covariates can be naturally grouped.For example,for gene expression data analysis,genes belonging to the same pathway might be viewed as a group.This paper studies variable selection problem for censored survival data in the additive hazards model when covariates are grouped.A hierarchical regularization method is proposed to simultaneously estimate parameters and select important variables at both the group level and the within-group level.For the situations in which the number of parameters tends to∞as the sample size increases,we establish an oracle property and asymptotic normality property of the proposed estimators.Numerical results indicate that the hierarchically penalized method performs better than some existing methods such as lasso,smoothly clipped absolute deviation(SCAD)and adaptive lasso.
基金supported by National Natural Science Foundation of China (Grant Nos.10871072,11101114 and 11171112)PhD Program Foundation of Ministry of Education of China (Grant No.20090076110001)
文摘Single-index varying-coefficient models (SIVCMs) are very useful in multivariate nonparametric regression.However,there has less attention focused on inferences of the SIVCMs.Using the local linear method,we propose estimates of the unknowns in the SIVCMs.In this article,our main purpose is to examine whether the generalized likelihood ratio (GLR) tests are applicable to the testing problem for the index parameter in the SIVCMs.Under the null hypothesis our proposed GLR statistic follows the chi-squared distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters or functions,which is called as Wilks' phenomenon (see Fan et al.,2001).A simulation study is conducted to illustrate the proposed methodology.
基金the China Postdoctoral Science Foundation under Grant No.2019M651422the National Natural Science Foundation of China under Grant Nos.71701127,11831008 and 11971171+3 种基金the National Social Science Foundation Key Program under Grant No.17ZDA091the 111 Project of China under Grant No.B14019the Natural Science Foundation of Shanghai under Grant Nos.17ZR1409000 and 20ZR1423000the Project of Humanities and Social Science Foundation of Ministry of Education under Grant No.20YJC910003。
文摘The problem of hazard rate estimation under right-censored assumption has been investigated extensively.Integrated square error(ISE)of estimation is one of the most widely accepted measurements of the global performance for nonparametric kernel estimation.But there are no results available for ISE of hazard rate estimation under right-censored model with censoring indicators missing at random(MAR)so far.This paper constructs an imputation estimator of the hazard rate function and establish asymptotic normality of the ISE for the kernel hazard rate estimator with censoring indicators MAR.At the same time,an asymptotic representation of the mean integrated square error(MISE)is also presented.The finite sample behavior of the estimator is investigated via one simple simulation.
基金supported by National Natural Science Foundation of China under Grant Nos.11571112,11501372,11571148,11471160Program of Shanghai Subject Chief Scientist(14XD1401600)+2 种基金the 111 Project of China(B14019)Project of National Social Science Fund of China(15BTJ027)Research Innovation Program for ECNU Graduates(ykc17083)
文摘This article studies the estimation and statistical inference problems of semi-functional partially linear regression models when the covariates in the linear part are measured with additive error. To obtain the estimation of the parametric component, a corrected profile least-squares based estimation procedure is developed. Asymptotic properties of the proposed estimators are established under some mild assumptions. To test hypothesis on the parametric part, the authors propose a novel test statistic based on the difference between the corrected residual sums of squares under the null and alternative hypotheses, and show that its limiting distribution is a weighted sum of independent standard χ12. Finally, the authors illustrate the finite sample performance of the methods with some simulation studies and a real data application.