Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formatio...Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formation carbonate-rich shale in the Jiyang Depression were analyzed, and the organic matter abundance, reservoir properties, and oil-bearing properties of different laminae were compared. Typical shale storage-seepage structures were classified, and the mobility of oil in different types of shale storage-seepage structure was compared. The results show that the repeated superposition of mud laminae and calcite laminae are the main layer structure of carbonate-rich shales. The calcite laminae are divided into micritic calcite laminae, sparry calcite laminae and fibrous calcite vein. The mud-rich laminae are the main contributor to the organic matter abundance and porosity of shale, with the best hydrocarbon generation potential, reservoir capacity, and oil-bearing property. The micritic calcite laminae also have relatively good hydrocarbon generation potential, reservoir capacity and oil-bearing property. The sparry calcite laminae and fibrous calcite vein have good permeability and conductivity. Four types of shale storage-seepage structure are developed in the carbonate-rich shale, and the mobility of oil in each type of storage-seepage structure is in descending order: sparry calcite laminae enriched shale storage-seepage structure, mixed calcite laminae enriched shale storage-seepage structure, fibrous calcite vein enriched shale storage-seepage structure, and micritic calcite laminae enriched shale storage-seepage structure. The exploration targets of carbonate-rich shale in the Jiyang Depression Shahejie Formation are different in terms of storage-seepage structure at different thermal evolution stages.展开更多
The mechanisms of abnormal high pressures are studied in this paper, and it is concluded that the undercompaction, hydrocarbon generation and stratum denudation are obviously effective to fluid pressure buildup. Becau...The mechanisms of abnormal high pressures are studied in this paper, and it is concluded that the undercompaction, hydrocarbon generation and stratum denudation are obviously effective to fluid pressure buildup. Because of the episodic difference, the hydrocarbon generation and stratum denudation are the main factors influencing oil-gas migration. On the basis of basin evolutionary analysis in the Dongying Sag, it is considered that the undercompaction mainly caused the abnormal pressure before the first denudation by the uplift in Late Paleogene, while hydrocarbon generation was the main factor of abnormal pressure after the denudation. The second denudation occurred in Late Neogene, which changed the pressure field and induced the fluid migration. The development of overpressures is the necessary condition to the formation of lithologic hydrocarbon reservoirs, which have positive correlations to overpressures. According to the fullness of the present reservoirs, the quantitative relations between oil-bearing property and driving forces of reservoir formation were determined, the latter were decided by dynamic source, reservoir capillary pressure, fluid pressure of surrounding rocks and the dynamic attenuation in different conducting systems.展开更多
Two comparative simulation experiments(a normal atmospheric-pressure opening system and a 20 MPa closed system)were conducted to study the geochemical evolution of n-alkane,sterane,and terpane biomarkers in the proces...Two comparative simulation experiments(a normal atmospheric-pressure opening system and a 20 MPa closed system)were conducted to study the geochemical evolution of n-alkane,sterane,and terpane biomarkers in the process of oil cracking into gas under different pressures.With an initial experimental temperature set at 300°C,the temperature was increased to 650°C at a heating rate of 30°C/h.The products were tested every 50°C starting at 300°C,and a pressure of 20 MPa was achieved using a water column.The low-maturity crude oil sample was from the Paleogene system in the Dongying sag in eastern China.The threshold temperature obtained for the primary oil cracking process in both pressure systems was 450°C.Before the oil was cracked into gas,some components,including macromolecular n-alkanes,were cracked into medium-or small-sized n-alkanes.The secondary oil cracking of heavy hydrocarbon gases of C2–5to methane mainly occurred between 550°C to 650°C,and the parameters Ln(C1/C2)and Ln(C1/C3),as well as the dry coefficients,increased.Overpressure inhibited the oil cracking process.In the 20 MPa system,the oil conversion rate decreased,the temperature threshold for gas generation rose,and oil cracking was inhibited.Compared with the normal pressure system,high-carbon n-alkanes and other compounds in the 20 MPa pressure system were reserved.Furthermore,the parameters∑C21-/∑22+,Ln(C1/C2),and Ln(C1/C3),as well as the dry coefficients,decreased within the main temperature range.During secondary oil cracking(550°C to 600°C),the Ph/nC18and Pr/nC17decreased.High pressure influenced the evolution of the biomarkers Ts and Tm,C31homohopane,C29sterane,and their related maturity parameters to different extents during oil cracking under different temperature ranges.展开更多
Two types of soluble organic matter, the free and adsorbed, were obtained and quantified from the brack- ish to saline lake source rocks. The adsorbed type was ex- tracted with chloroform, solvent mixtures of methanol...Two types of soluble organic matter, the free and adsorbed, were obtained and quantified from the brack- ish to saline lake source rocks. The adsorbed type was ex- tracted with chloroform, solvent mixtures of methanol: acetone:chloroform (MAC) and CS2:N-methyl-2-pyrroli- dinone (CS2/NMP). The total amounts of the two types of soluble organic matter from some immature source rocks are >830 mg/g TOC, more than 63% of the total organic matter in these samples. This result indicates that the majority of the organic matter in the immature source rocks in the brackish to saline lake basin is soluble, and is significant for study of petroleum formation and helpful for petroleum exploration in the brackish to saline lake basin.展开更多
基金Supported by the China National Science and Technology Major Project(2017ZX05049-004)Sinopec Project(P22083,P23084).
文摘Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formation carbonate-rich shale in the Jiyang Depression were analyzed, and the organic matter abundance, reservoir properties, and oil-bearing properties of different laminae were compared. Typical shale storage-seepage structures were classified, and the mobility of oil in different types of shale storage-seepage structure was compared. The results show that the repeated superposition of mud laminae and calcite laminae are the main layer structure of carbonate-rich shales. The calcite laminae are divided into micritic calcite laminae, sparry calcite laminae and fibrous calcite vein. The mud-rich laminae are the main contributor to the organic matter abundance and porosity of shale, with the best hydrocarbon generation potential, reservoir capacity, and oil-bearing property. The micritic calcite laminae also have relatively good hydrocarbon generation potential, reservoir capacity and oil-bearing property. The sparry calcite laminae and fibrous calcite vein have good permeability and conductivity. Four types of shale storage-seepage structure are developed in the carbonate-rich shale, and the mobility of oil in each type of storage-seepage structure is in descending order: sparry calcite laminae enriched shale storage-seepage structure, mixed calcite laminae enriched shale storage-seepage structure, fibrous calcite vein enriched shale storage-seepage structure, and micritic calcite laminae enriched shale storage-seepage structure. The exploration targets of carbonate-rich shale in the Jiyang Depression Shahejie Formation are different in terms of storage-seepage structure at different thermal evolution stages.
文摘The mechanisms of abnormal high pressures are studied in this paper, and it is concluded that the undercompaction, hydrocarbon generation and stratum denudation are obviously effective to fluid pressure buildup. Because of the episodic difference, the hydrocarbon generation and stratum denudation are the main factors influencing oil-gas migration. On the basis of basin evolutionary analysis in the Dongying Sag, it is considered that the undercompaction mainly caused the abnormal pressure before the first denudation by the uplift in Late Paleogene, while hydrocarbon generation was the main factor of abnormal pressure after the denudation. The second denudation occurred in Late Neogene, which changed the pressure field and induced the fluid migration. The development of overpressures is the necessary condition to the formation of lithologic hydrocarbon reservoirs, which have positive correlations to overpressures. According to the fullness of the present reservoirs, the quantitative relations between oil-bearing property and driving forces of reservoir formation were determined, the latter were decided by dynamic source, reservoir capillary pressure, fluid pressure of surrounding rocks and the dynamic attenuation in different conducting systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.40802026&41272140)Shandong Province Natural Science Foundation(Grant No.ZR2011DM004)
文摘Two comparative simulation experiments(a normal atmospheric-pressure opening system and a 20 MPa closed system)were conducted to study the geochemical evolution of n-alkane,sterane,and terpane biomarkers in the process of oil cracking into gas under different pressures.With an initial experimental temperature set at 300°C,the temperature was increased to 650°C at a heating rate of 30°C/h.The products were tested every 50°C starting at 300°C,and a pressure of 20 MPa was achieved using a water column.The low-maturity crude oil sample was from the Paleogene system in the Dongying sag in eastern China.The threshold temperature obtained for the primary oil cracking process in both pressure systems was 450°C.Before the oil was cracked into gas,some components,including macromolecular n-alkanes,were cracked into medium-or small-sized n-alkanes.The secondary oil cracking of heavy hydrocarbon gases of C2–5to methane mainly occurred between 550°C to 650°C,and the parameters Ln(C1/C2)and Ln(C1/C3),as well as the dry coefficients,increased.Overpressure inhibited the oil cracking process.In the 20 MPa system,the oil conversion rate decreased,the temperature threshold for gas generation rose,and oil cracking was inhibited.Compared with the normal pressure system,high-carbon n-alkanes and other compounds in the 20 MPa pressure system were reserved.Furthermore,the parameters∑C21-/∑22+,Ln(C1/C2),and Ln(C1/C3),as well as the dry coefficients,decreased within the main temperature range.During secondary oil cracking(550°C to 600°C),the Ph/nC18and Pr/nC17decreased.High pressure influenced the evolution of the biomarkers Ts and Tm,C31homohopane,C29sterane,and their related maturity parameters to different extents during oil cracking under different temperature ranges.
文摘Two types of soluble organic matter, the free and adsorbed, were obtained and quantified from the brack- ish to saline lake source rocks. The adsorbed type was ex- tracted with chloroform, solvent mixtures of methanol: acetone:chloroform (MAC) and CS2:N-methyl-2-pyrroli- dinone (CS2/NMP). The total amounts of the two types of soluble organic matter from some immature source rocks are >830 mg/g TOC, more than 63% of the total organic matter in these samples. This result indicates that the majority of the organic matter in the immature source rocks in the brackish to saline lake basin is soluble, and is significant for study of petroleum formation and helpful for petroleum exploration in the brackish to saline lake basin.