Spin parity effect on magnetic relaxation by quantum tunneling in the biaxial spin model is studied by taking into account the transverse local stray field. It is shown that the square root time dependence in the even...Spin parity effect on magnetic relaxation by quantum tunneling in the biaxial spin model is studied by taking into account the transverse local stray field. It is shown that the square root time dependence in the even resonance occurs in the presence of a distribution of transverse anisotropic parameters, while the odd resonance always shows exponential relaxation. Magnetic relaxation under a sweeping field is also studied. The variation of the relaxation curve with the increasing distribution width of the local stray field for even resonance is qualitatively different from that of the odd resonance. The theoretical result on even resonance is in agreement with experimental results on Fe8 system, while the prediction for odd resonance awaits the experimental verification.展开更多
基金National Natural Science Foundation of China under Grant No.10575045
文摘Spin parity effect on magnetic relaxation by quantum tunneling in the biaxial spin model is studied by taking into account the transverse local stray field. It is shown that the square root time dependence in the even resonance occurs in the presence of a distribution of transverse anisotropic parameters, while the odd resonance always shows exponential relaxation. Magnetic relaxation under a sweeping field is also studied. The variation of the relaxation curve with the increasing distribution width of the local stray field for even resonance is qualitatively different from that of the odd resonance. The theoretical result on even resonance is in agreement with experimental results on Fe8 system, while the prediction for odd resonance awaits the experimental verification.