为解决现有安全帽和反光衣检测模型对小目标和复杂天气中目标检测精度低、环境干扰因素大、难以在性能一般移动设备部署等问题,设计实现一种改进YOLOv8安全装备检测模型YOLOv8-DSI。首先,设计基于残差思想和并行空洞卷积的DR-SPPF模块,...为解决现有安全帽和反光衣检测模型对小目标和复杂天气中目标检测精度低、环境干扰因素大、难以在性能一般移动设备部署等问题,设计实现一种改进YOLOv8安全装备检测模型YOLOv8-DSI。首先,设计基于残差思想和并行空洞卷积的DR-SPPF模块,进一步扩大感受野且不损失图像分辨率,显著提升复杂天气检测精度;其次,在特征融合阶段设计结构轻量特征金字塔网络ST-BiFPN,进一步减小模型参数量,实现高效多尺度特征融合;最后,引入Inner-ShapeIoU损失函数,使得边界框回归更加准确,增强检测效果。在自建数据集上,相较于基线模型mAP50和mAP50:95分别提升了2.1%和4.7%,而模型参数量仅为2.4 M,计算量仅为7.3 G,分别降低了10.9%和20.0%。最终将改进模型部署到Jetson Orin Nano边缘设备,通过在开发板实际运行证明,改进后模型在复杂场景下有效性和可应用性。展开更多
文摘为解决现有安全帽和反光衣检测模型对小目标和复杂天气中目标检测精度低、环境干扰因素大、难以在性能一般移动设备部署等问题,设计实现一种改进YOLOv8安全装备检测模型YOLOv8-DSI。首先,设计基于残差思想和并行空洞卷积的DR-SPPF模块,进一步扩大感受野且不损失图像分辨率,显著提升复杂天气检测精度;其次,在特征融合阶段设计结构轻量特征金字塔网络ST-BiFPN,进一步减小模型参数量,实现高效多尺度特征融合;最后,引入Inner-ShapeIoU损失函数,使得边界框回归更加准确,增强检测效果。在自建数据集上,相较于基线模型mAP50和mAP50:95分别提升了2.1%和4.7%,而模型参数量仅为2.4 M,计算量仅为7.3 G,分别降低了10.9%和20.0%。最终将改进模型部署到Jetson Orin Nano边缘设备,通过在开发板实际运行证明,改进后模型在复杂场景下有效性和可应用性。