Photoacoustic mesoscopy(PAMe) offers high-sensitivity in vivo imaging based on the rich optical contrast in biological tissues,with sub-100-micron resolutions at a few millimeters depth. By benefiting from low ultraso...Photoacoustic mesoscopy(PAMe) offers high-sensitivity in vivo imaging based on the rich optical contrast in biological tissues,with sub-100-micron resolutions at a few millimeters depth. By benefiting from low ultrasonic scattering,this emerging technology has pushed the penetration depth beyond the optical diffuse limit unprecedented for high-resolution optical methods.Here,we review ed the state-of-art implementations of PAMe and their achievements in biological and primary clinical applications. With the high-frequency focused ultrasonic detector,the high-resolution optical visualization can be achieved by utilizing various PAMe systems. These capabilities of PAMe have made it well applicable for understanding the biological mechanisms,exploring the pathological features and analyzing the characteristics of human skin. Future improvements and prospects of PAMe are also mentioned,suggesting its great potential tow ards the corresponding emerging biomedical and clinical applications.展开更多
基金the National Natural Science Foundation of China (Grant Nos.81401453,81371602,61475115,61475116,61575140,81571723,and 81671728)the Tianjin Municipal Government of China (Grant Nos.14JCQNJC14400,15JCZDJC31800,15JCQNJC14500,and 16JCZDJC31200)
文摘Photoacoustic mesoscopy(PAMe) offers high-sensitivity in vivo imaging based on the rich optical contrast in biological tissues,with sub-100-micron resolutions at a few millimeters depth. By benefiting from low ultrasonic scattering,this emerging technology has pushed the penetration depth beyond the optical diffuse limit unprecedented for high-resolution optical methods.Here,we review ed the state-of-art implementations of PAMe and their achievements in biological and primary clinical applications. With the high-frequency focused ultrasonic detector,the high-resolution optical visualization can be achieved by utilizing various PAMe systems. These capabilities of PAMe have made it well applicable for understanding the biological mechanisms,exploring the pathological features and analyzing the characteristics of human skin. Future improvements and prospects of PAMe are also mentioned,suggesting its great potential tow ards the corresponding emerging biomedical and clinical applications.