针对实际应用中基于动态工况下电池状态参数的片段数据进行电池健康状态(state of health,SOH)实时估计的问题,提出基于动态工况下锂离子电池状态参数(电压、电流、温度)实测数据二维特征图像和深度学习的锂离子电池容量估计算法。首先...针对实际应用中基于动态工况下电池状态参数的片段数据进行电池健康状态(state of health,SOH)实时估计的问题,提出基于动态工况下锂离子电池状态参数(电压、电流、温度)实测数据二维特征图像和深度学习的锂离子电池容量估计算法。首先,将动态工况下电池状态参数监测量(电压、电流和温度)的片段数据转化为二维特征图像。其次,提出基于残差卷积神经网络(residual convolutional neural network,Res-CNN)和门控循环单元(gate recurrent unit,GRU)网络结合的多通道深度学习模型Res-CNN-GRU,以构建动态工况下电池状态参数特征图像和SOH之间的复杂非线性关系,其中电压、电流和温度的二维特征图像以三通道的方式输入到Res-CNN-GRU模型中,模型输出为对应电池的相邻参考充放电循环实验所获得容量的差值。研究结果表明:此方法在锂电池随机充放电工况下对电池健康状态估计效果更佳,且Res-CNN-GRU模型的泛化性和全局特征提取能力较强。论文研究为现实工况下电池健康状态估计的进一步深入研究提供了参考。展开更多
文摘针对黑白电影的上色过程中,自动上色模型只生成一种结果导致上色结果单一、基于参考示例上色方法需要用户指定参考图像、参考图像的高要求会耗费大量人力的问题,提出了一种多阶段的黑白影像智能色彩修复算法(A Multi-Stage Intelligent Color Restoration Algorithm for Black-and-White Movies,MSICRA)。首先,使用VGG19网络将电影分割为多个场景片段;其次,将每个场景片段逐帧切割,将每帧图像的边缘强度和灰度差作为图像清晰度评判指标,筛选出每个场景中清晰度位于[0.95,1]区间的图像;然后,选择筛选出的图像中的第一张,使用不同的渲染因子值进行上色,利用饱和度进行上色效果的评估,选择合适的渲染因子值对筛选出的图像上色;最后,利用上色前和上色后图像之间的均方误差选择上色质量较好的图像作为该场景片段上色的参考图像。实验结果表明,所提算法在黑白电影《雷锋》和《永不消逝的电波》的PSNR上分别提高了1.32%和2.15%,SSIM分别提高了1.84%和1.04%。该算法不仅可以实现全自动上色,而且颜色真实,符合人们的认知。