In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination...In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.展开更多
Rockfill materials have been widely used in the construction of rockfill dam,railway and highway subgrade due to its high filling density,good compaction performance,strong water permeability,small settlement deformat...Rockfill materials have been widely used in the construction of rockfill dam,railway and highway subgrade due to its high filling density,good compaction performance,strong water permeability,small settlement deformation and high bearing capacity.A reasonable constitutive model for rockfill materials is very important for engineering computation and analysis,and has a great development space.Based on the crushing stress and spatial mobilized plane(SMP),a state parameter that can comprehensively reflect the anisotropy and grain crushing is proposed.This state parameter is used to improve the MPZ model(a modifed ZienkiewiczⅢmodel),so that a generalized plastic model is constructed to describe the stress and deformation characteristics of rockfill materials in engineering.The validity of the developed model is verified by a series of conventional triaxial tests with different inclination angles of the compaction plane.The variation trend of the constructed anisotropy indexωcan reflect the non monotonic variation of the deformation and strength of rockfill with the direction angle of large principal stress,so the model can reflect the obvious difference caused by the initial anisotropy of rockfill on the mechanical properties.展开更多
基金Project(2017YFC0404802)supported by the National Key R&D Program of ChinaProjects(U1965206,51979143)supported by the National Natural Science Foundation of China。
文摘In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.
基金Project(2017YFC0404802)supported by the National Key R&D Program of ChinaProjects(U1965206,51979143)supported by the National Natural Science Foundation of ChinaProject([2018]5630)supported by the Talents of Guizhou Science and Technology Cooperation Platform,China。
文摘Rockfill materials have been widely used in the construction of rockfill dam,railway and highway subgrade due to its high filling density,good compaction performance,strong water permeability,small settlement deformation and high bearing capacity.A reasonable constitutive model for rockfill materials is very important for engineering computation and analysis,and has a great development space.Based on the crushing stress and spatial mobilized plane(SMP),a state parameter that can comprehensively reflect the anisotropy and grain crushing is proposed.This state parameter is used to improve the MPZ model(a modifed ZienkiewiczⅢmodel),so that a generalized plastic model is constructed to describe the stress and deformation characteristics of rockfill materials in engineering.The validity of the developed model is verified by a series of conventional triaxial tests with different inclination angles of the compaction plane.The variation trend of the constructed anisotropy indexωcan reflect the non monotonic variation of the deformation and strength of rockfill with the direction angle of large principal stress,so the model can reflect the obvious difference caused by the initial anisotropy of rockfill on the mechanical properties.