We cast vehicle recognition as problem of feature representation and classification, and introduce a sparse learning based framework for vehicle recognition and classification in this paper. After objects captured wit...We cast vehicle recognition as problem of feature representation and classification, and introduce a sparse learning based framework for vehicle recognition and classification in this paper. After objects captured with a GMM background subtraction program, images are labeled with vehicle type for dictionary learning and decompose the images with sparse coding (SC), a linear SVM trained with the SC feature for vehicle classification. A simple but efficient active learning stategy is adopted by adding the false positive samples into previous training set for dictionary and SVM model retraining. Compared with traditional feature representation and classification realized with SVM, SC method achieves dramatically improvement on classification accuracy and exhibits strong robustness. The work is also validated on real-world surveillance video.展开更多
基金the National Natural Science Foundation of China under Grant NO 61472166,NO 61105015,Jiangsu Provincial Natural Science Foundation under Grant NO BK2010366 and Key Laboratory of Cloud Computing and Intelligent Information Processing of Changzhou City under Grand NO CM20123004
文摘We cast vehicle recognition as problem of feature representation and classification, and introduce a sparse learning based framework for vehicle recognition and classification in this paper. After objects captured with a GMM background subtraction program, images are labeled with vehicle type for dictionary learning and decompose the images with sparse coding (SC), a linear SVM trained with the SC feature for vehicle classification. A simple but efficient active learning stategy is adopted by adding the false positive samples into previous training set for dictionary and SVM model retraining. Compared with traditional feature representation and classification realized with SVM, SC method achieves dramatically improvement on classification accuracy and exhibits strong robustness. The work is also validated on real-world surveillance video.