期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于扩展卡尔曼滤波的横向速度估计 被引量:1
1
作者 崔凡 张兴敢 柏业超 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期864-869,共6页
雷达在探测运动目标时,能够通过目标运动产生的多普勒频移估计目标的径向速度,但目标的横向速度难以估计.提出一种基于扩展卡尔曼滤波的横向速度估计方法,该方法基于毫米波波段的线性调频连续波雷达和MIMO(Multiple Input Multiple Outp... 雷达在探测运动目标时,能够通过目标运动产生的多普勒频移估计目标的径向速度,但目标的横向速度难以估计.提出一种基于扩展卡尔曼滤波的横向速度估计方法,该方法基于毫米波波段的线性调频连续波雷达和MIMO(Multiple Input Multiple Output)天线,将回波信号与本振信号混频得到差频信号.对差频信号进行傅里叶变换得到快时间维的距离数据.重复发射、接收和处理得到慢时间维数据.对快时间维和慢时间维数据进行扩展卡尔曼滤波,估计目标在笛卡儿坐标系下的位置、速度和速度矢量与雷达观测方向的夹角,计算得到目标横向速度.仿真结果表明,该方法能够有效降低噪声影响,快速收敛,准确估计目标的横向速度. 展开更多
关键词 横向速度 扩展卡尔曼滤波 毫米波雷达 线性调频连续波
下载PDF
Vehicle Representation and Classification of Surveillance Video Based on Sparse Learning 被引量:2
2
作者 CHEN Xiangjun RUAN Yaduan +2 位作者 zhang Peng CHEN Qimei zhang xinggan 《China Communications》 SCIE CSCD 2014年第A01期135-141,共7页
We cast vehicle recognition as problem of feature representation and classification, and introduce a sparse learning based framework for vehicle recognition and classification in this paper. After objects captured wit... We cast vehicle recognition as problem of feature representation and classification, and introduce a sparse learning based framework for vehicle recognition and classification in this paper. After objects captured with a GMM background subtraction program, images are labeled with vehicle type for dictionary learning and decompose the images with sparse coding (SC), a linear SVM trained with the SC feature for vehicle classification. A simple but efficient active learning stategy is adopted by adding the false positive samples into previous training set for dictionary and SVM model retraining. Compared with traditional feature representation and classification realized with SVM, SC method achieves dramatically improvement on classification accuracy and exhibits strong robustness. The work is also validated on real-world surveillance video. 展开更多
关键词 vehicle classification feature represen- tation sparse learning robustness and generalization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部