期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于电成像测井的深层页岩气储层裂缝特征及其与构造演化的关系 被引量:1
1
作者 张轩昂 闫建平 +3 位作者 廖茂杰 钟光海 郭伟 黄毅 《测井技术》 CAS 2023年第6期717-725,共9页
为了确定深层页岩气储层裂缝与构造的演化关系,利用电成像测井、岩心、地球化学测试等资料对川南泸州L20X井深层页岩气储层构造裂缝类型与产状特征、形成期次及与构造演化之间的关系开展研究。研究结果表明:(1)构造裂缝按成因可分为穿... 为了确定深层页岩气储层裂缝与构造的演化关系,利用电成像测井、岩心、地球化学测试等资料对川南泸州L20X井深层页岩气储层构造裂缝类型与产状特征、形成期次及与构造演化之间的关系开展研究。研究结果表明:(1)构造裂缝按成因可分为穿层剪切缝、层内张裂缝、顺层滑脱缝、复合缝、构造压溶缝合线;电成像测井数据可识别出的构造裂缝有高阻缝、高导缝和断层,高阻缝、高导缝多为穿层剪切缝。(2)构造裂缝的形成主要受3期构造运动的影响,印支期受NNW向应力挤压,发育NEE向剖面剪切缝和NWW向断层;燕山晚-喜山早期受SEE向挤压,发育NNE向剖面剪切缝和NEE向断层;喜山中-晚期受NEE向挤压,发育NW向剖面剪切缝和NNE向断层。电成像测井数据统计出的裂缝走向产状有NEE、NNE和NW,与3期构造运动密切相关,是3期构造运动在地层中留下的构造记录。该研究表明电成像测井数据可为构造期次演化分析提供依据。 展开更多
关键词 电成像测井 深层页岩气 裂缝 构造期次 构造演化 剪切缝 断层
下载PDF
基于动态特性的S-CO_(2)布雷顿循环构型对比 被引量:1
2
作者 边幸燕 王轩 +4 位作者 王瑞 蔡金文 张轩昂 田华 舒歌群 《工程热物理学报》 EI CAS CSCD 北大核心 2022年第9期2292-2298,共7页
S-CO_(2)布雷顿循环因其结构紧凑和热效率高等优点而被认为是最具有发展前景的动力系统之一。不同构型的动态特性对构型优选至关重要。本文基于Matlab/Simulink搭建了简单回热、再压缩和再热三种S-CO_(2)布雷顿循环构型的动态模型,并探... S-CO_(2)布雷顿循环因其结构紧凑和热效率高等优点而被认为是最具有发展前景的动力系统之一。不同构型的动态特性对构型优选至关重要。本文基于Matlab/Simulink搭建了简单回热、再压缩和再热三种S-CO_(2)布雷顿循环构型的动态模型,并探究了不同构型在热源温度阶跃下的开环特性和控制冷端温度下的负荷追踪特性。结果表明,三种构型均可以在控制冷端温度的前提下实现负荷的及时追踪。在设计工况下再热构型的热效率高于再压缩构型,但随着负荷的下降,结果则相反。 展开更多
关键词 S-CO_(2)布雷顿循环 构型 动态特性 遗传算法
原文传递
Energy management strategy for hybrid electric vehicle integrated with waste heat recovery system based on deep reinforcement learning 被引量:8
3
作者 WANG Xuan WANG Rui +2 位作者 SHU GeQun TIAN Hua zhang xuanang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第3期713-725,共13页
Hybrid electric vehicles(HEVs)are acknowledged to be an effective way to improve the efficiency of internal combustion engines(ICEs)and reduce fuel consumption.Although the ICE in an HEV can maintain high efficiency d... Hybrid electric vehicles(HEVs)are acknowledged to be an effective way to improve the efficiency of internal combustion engines(ICEs)and reduce fuel consumption.Although the ICE in an HEV can maintain high efficiency during driving,its thermal efficiency is approximately 40%,and the rest of the fuel energy is discharged through different kinds of waste heat.Therefore,it is important to recover the engine waste heat.Because of the great waste heat recovery performance of the organic Rankine cycle(ORC),an HEV integrated with an ORC(HEV-ORC)has been proposed.However,the addition of ORC creates a stiff and multi-energy problem,greatly increasing the complexity of the energy management system(EMS).Considering the great potential of deep reinforcement learning(DRL)for solving complex control problems,this work proposes a DRL-based EMS for an HEV-ORC.The simulation results demonstrate that the DRL-based EMS can save 2%more fuel energy than the rule-based EMS because the former provides higher average efficiencies for both engine and motor,as well as more stable ORC power and battery state.Furthermore,the battery always has sufficient capacity to store the ORC power.Consequently,DRL showed great potential for solving complex energy management problems. 展开更多
关键词 hybrid electric vehicles organic Rankine cycle waste heat recovery deep reinforcement learning energy management system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部