Objective: To investigate the attenuating effect of Hydroxysafflor yellow A(HSYA) on inflammatory injury in chronic obstructive pulmonary disease(COPD). Methods: Rats were randomly assigned to 7 groups according to bo...Objective: To investigate the attenuating effect of Hydroxysafflor yellow A(HSYA) on inflammatory injury in chronic obstructive pulmonary disease(COPD). Methods: Rats were randomly assigned to 7 groups according to body weight including normal control group, HSYA blank group(76.8 mg/kg), COPD group, COPD+HSYA(30, 48, 76.8 mg/kg) groups and COPD+dexamethasone(2 mg/kg), 10 in each group. Passive cigarette smoke and intratracheal instil ation of lipopolysaccharides were used to establish a COPD model in rats. Hematoxylin and eosin staining of lung tissue sections was used, real-time polymerase chain reaction(PCR) was used to assay m RNA levels of some cytokines in lung tissues, the cytokines in bronchoalveolar lavage fluid(BALF) were measured by enzyme-linked immunosorbent assay(ELISA), Western blot analysis was used to determine phosphorylated p38 mitogen-activated protein kinase(MAPK) levels in lung tissues, and nuclear factor-κB(NF-κB) p65 protein levels in lung tissues were detected by immunohistochemistry. Results: Lung alveolar septa destruction, alveolus fusion, inflammatory cel infiltration, and bronchiole exudation were observed. These pathological changes were al eviated in the COPD+HSYA group. The m RNA expression of inflammatory factors were significantly increased in lung tissues from COPD rats(all P<0.01) and were inhibited by HSYA. Levels of inflammatory cytokines in BALF of COPD rats were significantly increased(all P<0.01) which were inhibited by HSYA(all P<0.01, 48, 76.8 mg/kg). The levels of p38 MAPK phosphorylation and p65 in lung tissues of COPD rats were significantly increased(al P<0.01) and were suppressed by HSYA(all P<0.01, 48, 76.8 mg/kg). Conclusions: HSYA could alleviate inflammatory cell infiltration and other pathological changes in the lungs of COPD rats. HSYA could inhibit inflammatory cytokine expression, and increase phosphorylation of p38 MAPK and NF-κB p65 in the lungs of COPD rats. The protective mechanism of HSYA to inhibit COPD inflammation might be by attenuating NF-κB and p38 MAPK signal transduction.展开更多
基金Supported by the National Natural Science Foundation of China(No.81270103)the Natural Science Foundation of Beijing(No.7132047)the Project of Integrated Traditional Chinese Medicine-Western Medicine Institute of Heart Lung and Blood Vessel Diseases
文摘Objective: To investigate the attenuating effect of Hydroxysafflor yellow A(HSYA) on inflammatory injury in chronic obstructive pulmonary disease(COPD). Methods: Rats were randomly assigned to 7 groups according to body weight including normal control group, HSYA blank group(76.8 mg/kg), COPD group, COPD+HSYA(30, 48, 76.8 mg/kg) groups and COPD+dexamethasone(2 mg/kg), 10 in each group. Passive cigarette smoke and intratracheal instil ation of lipopolysaccharides were used to establish a COPD model in rats. Hematoxylin and eosin staining of lung tissue sections was used, real-time polymerase chain reaction(PCR) was used to assay m RNA levels of some cytokines in lung tissues, the cytokines in bronchoalveolar lavage fluid(BALF) were measured by enzyme-linked immunosorbent assay(ELISA), Western blot analysis was used to determine phosphorylated p38 mitogen-activated protein kinase(MAPK) levels in lung tissues, and nuclear factor-κB(NF-κB) p65 protein levels in lung tissues were detected by immunohistochemistry. Results: Lung alveolar septa destruction, alveolus fusion, inflammatory cel infiltration, and bronchiole exudation were observed. These pathological changes were al eviated in the COPD+HSYA group. The m RNA expression of inflammatory factors were significantly increased in lung tissues from COPD rats(all P<0.01) and were inhibited by HSYA. Levels of inflammatory cytokines in BALF of COPD rats were significantly increased(all P<0.01) which were inhibited by HSYA(all P<0.01, 48, 76.8 mg/kg). The levels of p38 MAPK phosphorylation and p65 in lung tissues of COPD rats were significantly increased(al P<0.01) and were suppressed by HSYA(all P<0.01, 48, 76.8 mg/kg). Conclusions: HSYA could alleviate inflammatory cell infiltration and other pathological changes in the lungs of COPD rats. HSYA could inhibit inflammatory cytokine expression, and increase phosphorylation of p38 MAPK and NF-κB p65 in the lungs of COPD rats. The protective mechanism of HSYA to inhibit COPD inflammation might be by attenuating NF-κB and p38 MAPK signal transduction.