一体化热防护结构通常处于严酷的非稳态热环境,热载荷作用的时间效应(即瞬态热效应)明显.为了避免瞬态热分析的巨大计算消耗,以往的一体化热防护结构优化设计研究通常将瞬态传热等效为相同热边界条件下的稳态传热,将稳态传热分析的温度...一体化热防护结构通常处于严酷的非稳态热环境,热载荷作用的时间效应(即瞬态热效应)明显.为了避免瞬态热分析的巨大计算消耗,以往的一体化热防护结构优化设计研究通常将瞬态传热等效为相同热边界条件下的稳态传热,将稳态传热分析的温度场作为设计热载荷.然而,已有的研究表明稳态传热无法准确等效瞬态传热的作用效果,瞬态热效应对结构设计结果具有重要影响.文章研究了考虑瞬态热效应的一体化热防护结构优化设计问题,建立一种考虑瞬态温度和应力约束的一体化热防护结构拓扑优化方法.该方法以SIMP(solid isotropic material with penalization)法为基础,构建两种针对一体化热防护结构的热弹性结构拓扑优化模型:(1)考虑材料体积分数、最大应力和底面最大温度约束,以最小化结构应变能为目标的刚度设计模型;(2)考虑最大应力和底面最大温度约束,以最小化材料体积分数为目标的轻量化设计模型.通过求解瞬态热力耦合方程获得结构的热力耦合静力分析结果;通过响应量在空间和时间域的凝聚积分函数表征结构响应在时域内的最大值,并以此构建相应的约束和目标函数;采用伴随法推导约束和目标函数的灵敏度表达式.通过3个数值算例验证了本方法的有效性.数值算例结果表明,在瞬态传热条件下,本方法能够准确反映瞬态热效应对一体化热防护结构设计结果的影响;相比于基于稳态热分析的设计结果,考虑瞬态热效应的设计结果具有更优的性能.展开更多
The design of thermal conductivity enhancers(TCE) is quite critical to overcoming the disadvantage of the poor thermal conductivity of phase change materials(PCM).The main contribution of this study is firstly to disc...The design of thermal conductivity enhancers(TCE) is quite critical to overcoming the disadvantage of the poor thermal conductivity of phase change materials(PCM).The main contribution of this study is firstly to discuss how to actively enhance natural convection of the melted PCM in cellular structure by the fin formed in the structure under the condition of the same metal mass,apart from simultaneously improving heat conduction,which can boost the heat transfer performance.Also,a tailored hybrid fin-lattice structure(HFS) as TCE is designed and fabricated by additive manufacturing(AM).A two-equation numerical method is applied to study the heat transfer of the PCM,and its feasibility is validated with the experimental data.The numerical results indicate that enhanced natural convection and improved heat conduction can be obtained simultaneously when a well-designed fin is embedded into a lattice structure.The enhanced natural convection results in the improved melting rate and the decreased wall temperature;e.g.,the complete melting time and the wall temperature are reduced by 11.6% and 19.7%,respectively,because of the fin for metal aluminum.Moreover,the parameters of HFS including the porosity,pore density,and fin dimension have a great impact on the heat transfer.The enhancement effect of the fin for HFS on the melting rate of the PCM increases as the thermal conductivity of the base material decreases.For example,when the fin is introduced into the lattice structure,the complete melting time is reduced by 24.1% for metal titanium.In summary,this study enables us to obtain a good understanding of the mechanism of the heat transfer and provides necessary experimental data for the structural design of HFS fabricated by AM.展开更多
Auxetic materials have previously been shown to enhance various performances due to its unusual property of becoming fatter when uniaxially stretched and thinner when uniaxially compressed (i.e., the materials exhibit...Auxetic materials have previously been shown to enhance various performances due to its unusual property of becoming fatter when uniaxially stretched and thinner when uniaxially compressed (i.e., the materials exhibit a negative Poisson's ratio). The current study focuses on assessing the potential of an auxetic material to enhance the buckling capacity of a rectangular plate under uniaxial compression. The in-plane translational restraint along the unloaded edges that was often neglected in open literature is taken into consideration in our buckling model proposed in this study. The closed-form expressions for the critical buckling coefficient of the rectangle are provided and the predicted results agree well with those determined by the finite element method. Furthermore, the results indicate that the buckling performance of a rectangular plate under uniaxial compression can be significantly improved by replacing the traditional material that has a positive Poisson's ratio with an auxetic material when there is in-plane translation restraint along the unloaded edges. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.展开更多
We analyze Double Star TC-1 magnetic field data from July to September in 2004 and find that plas-moids exist in the very near-Earth magnetotail. It is the first time that TC-1 observes the plasmoids inthe magnetotail...We analyze Double Star TC-1 magnetic field data from July to September in 2004 and find that plas-moids exist in the very near-Earth magnetotail. It is the first time that TC-1 observes the plasmoids inthe magnetotail at X > ?13 RE. According to the difference of the magnetic field structure in plasmoids,we choose two typical cases for our study: the magnetic flux rope on August 6 with the open magneticfield and the magnetic loop on September 14 with the closed magnetic field. Both of the cases are as-sociated with the high speed earthward flow and the magnetic loop is related to a strong substorm. Theions can escape from the magnetic flux rope along its open field line, but the case of the closed mag-netic loop can trap the ions. The earthward flowing plasmoids observed by TC-1 indicate that the mul-tiple X-line magnetic reconnection occurs beyond the distance of X=?10 RE from the earth.展开更多
文摘一体化热防护结构通常处于严酷的非稳态热环境,热载荷作用的时间效应(即瞬态热效应)明显.为了避免瞬态热分析的巨大计算消耗,以往的一体化热防护结构优化设计研究通常将瞬态传热等效为相同热边界条件下的稳态传热,将稳态传热分析的温度场作为设计热载荷.然而,已有的研究表明稳态传热无法准确等效瞬态传热的作用效果,瞬态热效应对结构设计结果具有重要影响.文章研究了考虑瞬态热效应的一体化热防护结构优化设计问题,建立一种考虑瞬态温度和应力约束的一体化热防护结构拓扑优化方法.该方法以SIMP(solid isotropic material with penalization)法为基础,构建两种针对一体化热防护结构的热弹性结构拓扑优化模型:(1)考虑材料体积分数、最大应力和底面最大温度约束,以最小化结构应变能为目标的刚度设计模型;(2)考虑最大应力和底面最大温度约束,以最小化材料体积分数为目标的轻量化设计模型.通过求解瞬态热力耦合方程获得结构的热力耦合静力分析结果;通过响应量在空间和时间域的凝聚积分函数表征结构响应在时域内的最大值,并以此构建相应的约束和目标函数;采用伴随法推导约束和目标函数的灵敏度表达式.通过3个数值算例验证了本方法的有效性.数值算例结果表明,在瞬态传热条件下,本方法能够准确反映瞬态热效应对一体化热防护结构设计结果的影响;相比于基于稳态热分析的设计结果,考虑瞬态热效应的设计结果具有更优的性能.
基金the National Natural Science Foundation of China (Grant No.11972105,U1808215 and 11821202)the 111 Project (B14013)the Fundamental Research Funds for the Central Universities of China。
文摘The design of thermal conductivity enhancers(TCE) is quite critical to overcoming the disadvantage of the poor thermal conductivity of phase change materials(PCM).The main contribution of this study is firstly to discuss how to actively enhance natural convection of the melted PCM in cellular structure by the fin formed in the structure under the condition of the same metal mass,apart from simultaneously improving heat conduction,which can boost the heat transfer performance.Also,a tailored hybrid fin-lattice structure(HFS) as TCE is designed and fabricated by additive manufacturing(AM).A two-equation numerical method is applied to study the heat transfer of the PCM,and its feasibility is validated with the experimental data.The numerical results indicate that enhanced natural convection and improved heat conduction can be obtained simultaneously when a well-designed fin is embedded into a lattice structure.The enhanced natural convection results in the improved melting rate and the decreased wall temperature;e.g.,the complete melting time and the wall temperature are reduced by 11.6% and 19.7%,respectively,because of the fin for metal aluminum.Moreover,the parameters of HFS including the porosity,pore density,and fin dimension have a great impact on the heat transfer.The enhancement effect of the fin for HFS on the melting rate of the PCM increases as the thermal conductivity of the base material decreases.For example,when the fin is introduced into the lattice structure,the complete melting time is reduced by 24.1% for metal titanium.In summary,this study enables us to obtain a good understanding of the mechanism of the heat transfer and provides necessary experimental data for the structural design of HFS fabricated by AM.
基金supported by the National Natural Science Foundation of China (Nos. 11572071, 11332004,)the National Basic Research Program of China (No. 2011CB610304)+1 种基金the Program of Introducing Talents of Discipline to Universities (No. B14013)the China Scholarship Council (No. 201308210038)
文摘Auxetic materials have previously been shown to enhance various performances due to its unusual property of becoming fatter when uniaxially stretched and thinner when uniaxially compressed (i.e., the materials exhibit a negative Poisson's ratio). The current study focuses on assessing the potential of an auxetic material to enhance the buckling capacity of a rectangular plate under uniaxial compression. The in-plane translational restraint along the unloaded edges that was often neglected in open literature is taken into consideration in our buckling model proposed in this study. The closed-form expressions for the critical buckling coefficient of the rectangle are provided and the predicted results agree well with those determined by the finite element method. Furthermore, the results indicate that the buckling performance of a rectangular plate under uniaxial compression can be significantly improved by replacing the traditional material that has a positive Poisson's ratio with an auxetic material when there is in-plane translation restraint along the unloaded edges. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.
基金the National Natural Science Foundation of China (Grant Nos. 40674094, 49804009, 40523006, 40620130094 and 40390150)International Space Science Institute at Bernthe International Collaboration Research Team Pro-gram and Hundred Talents Program of the CAS
文摘We analyze Double Star TC-1 magnetic field data from July to September in 2004 and find that plas-moids exist in the very near-Earth magnetotail. It is the first time that TC-1 observes the plasmoids inthe magnetotail at X > ?13 RE. According to the difference of the magnetic field structure in plasmoids,we choose two typical cases for our study: the magnetic flux rope on August 6 with the open magneticfield and the magnetic loop on September 14 with the closed magnetic field. Both of the cases are as-sociated with the high speed earthward flow and the magnetic loop is related to a strong substorm. Theions can escape from the magnetic flux rope along its open field line, but the case of the closed mag-netic loop can trap the ions. The earthward flowing plasmoids observed by TC-1 indicate that the mul-tiple X-line magnetic reconnection occurs beyond the distance of X=?10 RE from the earth.