材料的复折射率是计算偏振度时不可缺少的物理参数。由于直接测量复折射率较为困难,在现有的粗糙表面偏振双向反射分布函数(polarized Bidirectional Reflectance Distribution Function,pBRDF)的基础上,推导了材料的偏振反射率表达式,...材料的复折射率是计算偏振度时不可缺少的物理参数。由于直接测量复折射率较为困难,在现有的粗糙表面偏振双向反射分布函数(polarized Bidirectional Reflectance Distribution Function,pBRDF)的基础上,推导了材料的偏振反射率表达式,提出了入射光线为线性偏振时材料表面参数的反演方法,提高了复折射率计算的适用性。反演结果与文献中参考值的对比表明,该反演方法具有较高的可靠性。展开更多
In this paper, the research progress of thermal conductive plastics at present is summarized from the categories of thermal conductive plastics, the advantages of thermal conductive plastics over other thermal conduct...In this paper, the research progress of thermal conductive plastics at present is summarized from the categories of thermal conductive plastics, the advantages of thermal conductive plastics over other thermal conductive materials, several common preparation methods of thermal conductive plastics and the key problems in future research.The problems found in the process of summarizing are discussed and prospected.展开更多
文摘材料的复折射率是计算偏振度时不可缺少的物理参数。由于直接测量复折射率较为困难,在现有的粗糙表面偏振双向反射分布函数(polarized Bidirectional Reflectance Distribution Function,pBRDF)的基础上,推导了材料的偏振反射率表达式,提出了入射光线为线性偏振时材料表面参数的反演方法,提高了复折射率计算的适用性。反演结果与文献中参考值的对比表明,该反演方法具有较高的可靠性。
文摘In this paper, the research progress of thermal conductive plastics at present is summarized from the categories of thermal conductive plastics, the advantages of thermal conductive plastics over other thermal conductive materials, several common preparation methods of thermal conductive plastics and the key problems in future research.The problems found in the process of summarizing are discussed and prospected.