In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based ...In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network(Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set.Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy.展开更多
文摘In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network(Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set.Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy.